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Three Topological Properties

Suppose X is a topological space.

Lindelöf : every open cover of X has a countable subcover.

Separable: X has a countable dense subset.

Fréchet-Urysohn (Arhangel’skii 1963): if x is in the closure of
A, then there is a countable B ⊆ A so that x is in the closure of B.
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Selection Principles

Rothberger (1938): Given a sequence of open covers Un, sets
Un ∈ Un can be chosen so that {Un : n ∈ ω} is an open cover.

Selective Separability (Scheepers 1999): Given a sequence of
dense sets, Dn, points xn ∈ Dn can be chosen so that {xn : n ∈ ω}
is dense.

Strong Countable Fan Tightness (Arhangel’skii 1986):
Given a point x and a sequence of sets An so that x ∈ An, points
xn ∈ An can be chosen so that x ∈ {xn : n ∈ ω}.
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Rothberger
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Strong Countable Fan Tightness
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Selection Principles

Suppose that A and B are collections.

S1(A,B) (Menger, Hurewicz 1924) (Scheepers 1996)

S1(A,B) means that for all sequences An consisting of elements of A,
there are choices xn ∈ An so that {xn : n ∈ ω} ∈ B.
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Notation

Let O(X) denote the open covers of X.

Let DX denote the dense subsets of X.

Let ΩX,x denote the sets A ⊆ X such that x ∈ A.

Note that

X is Rothberger if and only if S1(O(X),O(X)).

X is selectively separable if and only if S1(DX ,DX).

X has strong countable fan tightness at x if and only if
S1(ΩX,x,ΩX,x).
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Selection Games

Suppose that A and B are collections of sets.

G1(A,B)

At round n, player I plays An ∈ A and player II plays xn ∈ An.

I A0 ∈ A A1 ∈ A · · ·
II x0 ∈ A0 x1 ∈ A1 · · ·

Player II wins a given run of the game if {xn : n ∈ ω} ∈ B.

Player I wins a given run of the game if {xn : n ∈ ω} /∈ B.

J.Holshouser (with C. Caruvana)
Translating Strategic Information Across Selection Games 8

/ 39



Strategies

A perfect information (PI) strategy for either player One or
Two is a strategy for responding to the other player that takes as
inputs all of the previous plays of the game.

A Markov strategy for player Two is a strategy that takes as
inputs the current turn number and the most recent play of player
One.

A pre-determined (PD) strategy for player One is a strategy
where the only input is the current turn number.

A strategy is winning if following the strategy guarantees that
the player will win the game.
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Strategies

Playing according to a PI strategy for One:

I σ(∅) σ(x0) σ(x0, x1) · · ·
II x0 x1 x2 · · ·

Playing according to a PI strategy for Two:

I A0 A1 A2 · · ·
II τ(A0) τ(A0, A1) τ(A0, A1, A2) · · ·

Playing according to a Markov strategy for Two:

I A0 A1 A2 · · ·
II τ(A0, 0) τ(A1, 1) τ(A2, 2) · · ·

Playing according to a PD strategy for One:

I σ(0) σ(1) σ(2) · · ·
II x0 x1 x2 · · ·
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A Strength Hierarchy

For the selection game G1(A,B):

Two has a winning Markov Strategy

⇓
Two has a winning PI strategy

⇓
One has no winning PI strategy

⇓
One has no winning PD strategy ⇐⇒ S1(A,B)
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A Strength Hierarchy

For the Rothberger game:

Two has a winning Markov Strategy ⇐⇒ countable

⇓
Two has a winning PI strategy

⇓
One has no winning PI strategy

⇓
One has no winning PD strategy ⇐⇒ Rothberger
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Game Equivalence

Definition

Define G1(A, C) ≤II G1(B,D) as the conjunction of the following implications.

1 Two has Mark in G1(A, C) =⇒ Two has a Mark in G1(B,D)

2 Two has PI strat in G1(A, C) =⇒ Two has a PI strat in G1(B,D)

3 One has no PI strat in G1(A, C) =⇒ One has no PI strat in G1(B,D)

4 One has no PD strat in G1(A, C) =⇒ One has no PD strat in G1(B,D)

This relation is transitive.

if G1(A, C) ≤II G1(B,D) and G1(B,D) ≤II G1(A, C), we say the two
games are equivalent.
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Roots in Earlier Work

Monotonicity Laws (Scheepers 2003)

Suppose A, B, C, and D are collections.

If A ⊆ B, then G1(B, C) ≤II G1(A, C).
If C ⊆ D, then G1(A, C) ≤II G1(A,D).

So

G1(O(X),O(X)) ≤II G1(countable open covers,O(X)) and

G1(DX ,DX) ≤II G1(DX ,ΩX,x).
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The Space of Continuous Functions

Set C(X) to be collection of all continuous functions f : X → R.

The Topology of Point-Wise Convergence

C(X) with this topology will be denoted Cp(X). The open sets are
generated by sets of the form:

[f ; {x0, · · · , xn}, ε] = {g : |f(x0)− g(x0)| < ε, · · · , |f(xn)− g(xn)| < ε}

where f is continuous, x0, · · · , xn ∈ X, and ε > 0.
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Common Topologies on the Space of Continuous
Functions

f with a neighborhood [f ;F, ε].
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A Topological Connection

If f : X → R is continuous, and k ∈ ω, then f−1[(−2−k, 2−k)] is
open.

If A ⊆ Cp(X) has 0 in its closure, then for a fixed k,

U = {f−1[(−2−k, 2−k)] : f ∈ A}

is an open cover of X.

In fact, if F ⊆ X is finite, then there is a U ∈ U so that F ⊆ U .
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ω-Covers

A non-trivial open cover U of X is an ω-cover if for all finite F ⊆ X,
there is a U ∈ U so that F ⊆ U .
Ω(X) is the collection of ω-covers of X.

Proposition

If A ∈ ΩCp(X),0, then

U (A, k) := {f−1[(−2−k, 2−k)] : f ∈ A} ∈ Ω(X)

Proof.

Suppose A ∈ ΩCp(X),0. Let F ⊆ X be finite. Then [0;F, 2−k] is an

open nhood of 0. So there is an f ∈ A so that f ∈ [0;F, 2−k]. Then
F ⊆ f−1[(−2−k, 2−k)].
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ω-Covers

Proposition

Consider fn ∈ Cp(X) with the property that

{f−1n [(−2−n, 2−n)] : n ∈ ω} ∈ Ω(X).

Then we also know that {fn : n ∈ ω} ∈ ΩCp(X),0.

Proof.

Consider a basic open nhood [0;F, ε]. Since F is finite, there is an n so
that 2−n < ε and F ⊆ f−1n [(−2−n, 2−n)]. Thus fn ∈ [0;F, ε].
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Complete Regularity

Definition

Recall that space X is completely regular if for every point x ∈ X
and closed set F ⊆ X with x /∈ F , there is a continuous function
f : X → [0, 1] so that f(x) = 0 and f |F = 1.

Note that you can also find continuous functions to separate finite sets
from closed sets, and even separate compact sets from closed sets.
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Complete Regularity

Suppose that X is Hausdorff and completely regular.

Proposition

If U ∈ Ω(X), then

A(U ) := {f : (∃U ∈ U )[f |X\U = 1]} ∈ ΩCp(X),0.

Proof.

Suppose U ∈ Ω(X). Consider a basic open nhood [0;F, ε]. There is a
U ∈ U so that F ⊆ U . There is then a continuous f : X → R so that
f |F = 0 and f |X\U = 1. Then f ∈ [0;F, ε].
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Complete Regularity

Proposition

Suppose {fn : n ∈ ω} ∈ ΩCp(X),0 and that Un ⊆ X are open so that
fn|X\Un

= 1. Then {Un : n ∈ ω} ∈ Ω(X).

Proof.

Suppose F ⊆ X is finite. Then [0;F, 1] is open nhood of 0, so there is
an n so that fn ∈ [0;F, 1]. Thus F ⊆ f−1n [(−1, 1)]. fn|X\Un

= 1, this
means that F ∩ (X \ Un) = ∅. Therefore F ⊆ Un.
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Equivalences

Suppose that X is Hausdorff and completely regular.

X is countable if and only if Cp(X) is Frechét-Urysohn (at 0).

S1(Ω(X),Ω(X)) if and only if S1(ΩCp(X),0,ΩCp(X),0)
(Arkhangel’skii 1978).

Theorem (Clontz and Holshouser 2018)

G1(Ω(X),Ω(X)) and G1(ΩCp(X),0,ΩCp(X),0) are equivalent.
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A Repetitive Proof

To see that if Two has a winning PI strat in G1(Ω(X),Ω(X)), then
Two also has one in G1(ΩCp(X),0,ΩCp(X),0):

1 Let τ win for Two in G1(Ω(X),Ω(X)) and use it to define t for
Two in G1(ΩCp(X),0,ΩCp(X),0).

2 If One plays A0, this creates U (A0, 0), which builds τ(U (A0, 0)).

3 τ(U (A0, 0)) is f−10 [(−1, 1)] for some f0 ∈ A0. Set t(A0) = f0.

4 Now suppose One responds with A1. This creates U (A1, 1), which
builds τ(U (A0, 0),U (A1, 1)), which comes from f1 ∈ A1. Set
t(A0, A1) = f1.

5 Continue in this way recursively to define all of t.

6 Verify t is well-defined.

7 Verify t is a winning strategy.

Now do essentially the same thing with the other three parts.
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G1(Ω(X),Ω(X)) ≤II G1(ΩCp(X),0,ΩCp(X),0)

J.Holshouser (with C. Caruvana)
Translating Strategic Information Across Selection Games 25

/ 39



G1(ΩCp(X),0,ΩCp(X),0) ≤II G1(Ω(X),Ω(X))
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A Translation Theorem

Theorem (Caruvana and Holshouser 2019)

Let A, B, C, and D be collections. Suppose there are functions
←−
T I,n : B → A and
−→
T II,n :

⋃
A× B →

⋃
B

so that

1 if x ∈
←−
T I,n(B), then

−→
T II,n(x,B) ∈ B and

2 if xn ∈
←−
T I,n(Bn) for all n, then

{xn : n ∈ ω} ∈ C =⇒ {
−→
T II,n(xn, Bn) : n ∈ ω} ∈ D

Then G1(A, C) ≤II G1(B,D).
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A Translation Theorem
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Examples

G1(Ω(X),Ω(X)) ≤II G1(ΩCp(X),0,ΩCp(X),0)

A = C = Ω(X), their unions are all open subsets of X.

B = D = ΩCp(X),0, their unions are Cp(X).
←−
T I,n(A) = U (A,n).
−→
T II,n(U,A) = f so that U = f−1[(−2−n, 2−n)].(*)

G1(ΩCp(X),0,ΩCp(X),0) ≤II G1(Ω(X),Ω(X))

A = C = ΩCp(X),0, their unions are Cp(X).

B = D = Ω(X), their unions are all open subsets of X.
←−
T I,n(U ) = A(U ).
−→
T II,n(f,U ) = U so that U ∈ U and f |X\U = 1.(*)

(*): minus some small details.
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A Synchronized Translation Theorem

Corollary (Caruvana and Holshouser 2020)

Let A, B, C, and D be collections.
Suppose there is a map ϕ :

⋃
B × ω →

⋃
A so that

1 For all B ∈ B and all n, ϕ[B × {n}] ∈ A, and

2 If yn ∈ Bn for each n and {ϕ(yn, n) : n ∈ ω} ∈ C, then
{yn : n ∈ ω} ∈ D.

Then G1(A, C) ≤II G1(B,D).

To see that G1(Ω(X),Ω(X)) ≤II G1(ΩCp(X),0,ΩCp(X),0), we can use
ϕ(f, n) = f−1[(−2−n, 2−n)].
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A Synchronized Translation Theorem

J.Holshouser (with C. Caruvana)
Translating Strategic Information Across Selection Games 31

/ 39



The Fell Topology on the Closed Subsets of X

Let F(X) denote the collection of closed subsets of X.

The Upper Fell Topology (Fell 1962)

The Upper Fell Topology on F(X) is generated by basic open sets of
the form

(U)+ := {F ∈ F(X) : F ⊆ U}

where U is the complement of a compact set.

A basic neighborhood of F has the form (X \K)+ where K is compact
and F ∩K = ∅.
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The Fell Topology on the Closed Subsets of X

F with an open neighborhood (X \K)+.
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The Fell Topology on the Closed Subsets of X

F with an open neighborhood (X \K)+.
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A Topological Connection

U ⊆ X is open if and only if X \ U is a point in F(X).

If D ⊆ F(X) is dense, then {X \F : F ∈ D} is an open cover of X.

In fact, if K ⊆ X is compact, then there is an F ∈ D so that
K ⊆ X \ F .
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k-Covers

A non-trivial open cover U of X is a k-cover if for all compact
K ⊆ X, there is a U ∈ U so that K ⊆ U .
K(X) is the collection of k-covers of X.

Proposition

U ∈ K(X) if and only if {X \ U : U ∈ U } ∈ DF(X).

D ∈ DF(X) if and only if {X \ F : F ∈ D} ∈ K(X).
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Another Equivalence

S1(K(X),K(X)) if and only if S1(DF(X),DF(X)) (Mario, Kočinac,
and Meccariello 2005).

Theorem (Caruvana and Holshouser 2021)

G1(K(X),K(X)) is equivalent to G1(DF(X),DF(X)).

Proof.

For G1(K(X),K(X)) ≤II G1(DF(X),DF(X)) use ϕ(F, n) = X \ F .

For G1(DF(X),DF(X)) ≤II G1(K(X),K(X)), use ψ(U, n) = X \ U .
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A Synchronized Turnless Translation Theorem

Corollary

Let A,B, C,D be collections with
⋃
C ⊆

⋃
A and

⋃
D ⊆

⋃
B.

Suppose there exists a bijection β :
⋃
A →

⋃
B so that:

A ∈ A if and only if β[A] ∈ B, and

C ∈ C if and only if β[C] ∈ D.

Then G1(A, C) is equivalent to G1(B,D).

To see that G1(K(X),K(X)) is equivalent to G1(DF(X),DF(X)) use
β(U) = X \ U .

J.Holshouser (with C. Caruvana)
Translating Strategic Information Across Selection Games 38

/ 39



Thanks

Thanks for Listening
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