Selection Games on Continuous Functions

J.Holshouser (joint work with Chris Caruvana)

Department of Mathematics and Statistics University of South Alabama

2019 Fall Central Sectional Meeting

Given an open set U of continuous functions $f: X \to \mathbb{R}$, when can we guarantee that there is an infinite subset of U which is closed discrete?

More generally, given a sequence of open sets U_n , when can we guarantee that there are choices $f_n \in U_n$ so that $\{f_n : n \in \omega\}$ is closed discrete?

Selection Principles/Games

Suppose that $\mathcal A$ and $\mathcal B$ are collections of sets.

$S_1(\mathcal{A}, \mathcal{B})$

For every sequence $(A_n : n \in \omega)$ of sets from A, there are $x_n \in A_n$ so that $\{x_n : n \in \omega\} \in \mathcal{B}$

$G_1(\mathcal{A}, \mathcal{B})$

 $S_1(A, B)$ can be turned into a two-player game $G_1(A, B)$:

$$
\begin{array}{c|cccc}\n1 & A_0 \in \mathcal{A} & A_1 \in \mathcal{A} & \cdots \\
\hline\n\text{II} & x_0 \in A_0 & x_1 \in A_1 & \cdots\n\end{array}
$$

- Player II wins a given run of the game if $\{x_n : n \in \omega\} \in \mathcal{B}$.
- Player I wins a given run of the game if $\{x_n : n \in \omega\} \notin \mathcal{B}$.

Perfect Information Strategies

Fix a game $G_1(\mathcal{A}, \mathcal{B})$.

Perfect Information Strategy For Player I

$$
\begin{array}{c|ccccc}\n1 & \sigma(\emptyset) & \sigma(x_0) & \sigma(x_0, x_1) & \cdots \\
\hline\n\text{II} & x_0 & x_1 & x_2 & \cdots\n\end{array}
$$

 σ is winning if it produces winning plays for I. If I has a winning strategy we write $I \uparrow G_1(\mathcal{A}, \mathcal{B})$.

Perfect Information Strategy for Player II

$$
\begin{array}{c|ccccc}\n1 & A_0 & A_1 & A_2 & \cdots \\
\hline\n\text{II} & \tau(A_0) & \tau(A_0, A_1) & \tau(A_0, A_1, A_2) & \cdots\n\end{array}
$$

 τ is winning if it produces winning plays for II. If II has a winning strategy we write $\Pi \uparrow G_1(\mathcal{A}, \mathcal{B})$.

Pre-Determined for Player I

$$
\begin{array}{c|ccccc}\n1 & \sigma(0) & \sigma(1) & \sigma(2) & \cdots \\
\hline\n\text{II} & x_0 & x_1 & x_2 & \cdots\n\end{array}
$$

If I has a winning pre-determined strategy we write $I \uparrow_{pre} G_1(\mathcal{A}, \mathcal{B})$

Markov Strategy for Player II

$$
\begin{array}{c|ccccc}\n1 & A_0 & A_1 & A_2 & \cdots \\
\hline\n\text{II} & \tau(A_0, 0) & \tau(A_1, 1) & \tau(A_2, 2) & \cdots\n\end{array}
$$

If II has a winning Markov tactic we write II $\uparrow_{mark} G_1(\mathcal{A}, \mathcal{B})$.

Dual and Equivalent Games

Equivalent Games

Say $G_1(\mathcal{A}, \mathcal{C})$ and $G_1(\mathcal{B}, \mathcal{D})$ are **equivalent** if

$$
\bullet \ \mathsf{I}\uparrow_{\mathsf{pre}} G_1(\mathcal{A}, \mathcal{C}) \iff \mathsf{I}\uparrow_{\mathsf{pre}} G_1(\mathcal{B}, \mathcal{D}),
$$

 \bullet I \uparrow $G_1(\mathcal{A}, \mathcal{C}) \iff$ I \uparrow $G_1(\mathcal{B}, \mathcal{D})$,

$$
\bullet \ \mathsf{II}\uparrow \mathsf{G}_1(\mathcal{A},\mathcal{C}) \iff \mathsf{II}\uparrow \mathsf{G}_1(\mathcal{B},\mathcal{D}),
$$

$$
\bullet \ \mathsf{II} \uparrow_{\textit{mark}} G_1(\mathcal{A}, \mathcal{C}) \iff \mathsf{II} \uparrow_{\textit{mark}} G_1(\mathcal{B}, \mathcal{D}).
$$

Dual Games

Say $G_1(\mathcal{A}, \mathcal{C})$ and $G_1(\mathcal{B}, \mathcal{D})$ are **dual** if

- \bullet I \uparrow_{pre} $G_1(\mathcal{A}, \mathcal{C}) \iff$ II \uparrow_{mark} $G_1(\mathcal{B}, \mathcal{D})$.
- \bullet I \uparrow $G_1(\mathcal{A}, \mathcal{C}) \iff$ II \uparrow $G_1(\mathcal{B}, \mathcal{D})$,
- \bullet II \uparrow G₁(A, C) \Longleftrightarrow I \uparrow G₁(B, D),
- \bullet II \uparrow _{mark} $G_1(\mathcal{A}, \mathcal{C}) \iff \downarrow \uparrow$ _{pre} $G_1(\mathcal{B}, \mathcal{D})$.

A Strength Hierarchy

II ↑ $_{mark}$ G₁(A, B) \Rightarrow II ↑ G(A, B) \Rightarrow I \uparrow G₁(A, B) \Rightarrow I \uparrow _{pre} G₁(A, B)

I \uparrow $_{\mathsf{pre}}$ $G_1(\mathcal{A}, \mathcal{B}) \iff S_1(\mathcal{A}, \mathcal{B})$

Notation

- \bullet \mathcal{T}_X is the collection of open subsets of X,
- \bullet Ω_X is the collection of all open covers U with $X \notin U$ and so that whenever $F \subseteq X$ is finite, there is a $U \in \mathcal{U}$ so that $F \subseteq U$,
- for $F \subseteq X$ finite, $\mathcal{N}(F)$ is the collection of open sets U with $F \subseteq U$,

•
$$
\mathcal{N}[X^{<\omega}] = \{\mathcal{N}(F) : F \subseteq X \text{ is finite}\},\
$$

• $C_p(X)$ is the space of continuous functions $f: X \to \mathbb{R}$ with the topology of point-wise convergence. Its basis is sets of the form

$$
[f; F, \varepsilon] = \{ g \in C_p(X) : (\forall x \in F) \big[|f(x) - g(x)| < \varepsilon \big] \}.
$$

where $F \subset X$ is finite,

- $\Omega_{X,x}$ is all sets A with $x \in \overline{A} \setminus A$,
- CD_x is the set of all closed discrete subsets of X
- $G_1(\Omega_X, \Omega_X)$ A modification of the Rothberger game Do nice covers have nice countable subcovers?
- $G_1(\mathcal{N}[X^{<\omega}],\neg \Omega_X)$ A modification of the point-open game What does it take to fill out the space?
- $G_1({\mathcal N}_{C_p(X)}(\mathbf{0}),\neg \Omega_{C_p(X),\mathbf{0}})$ Gruenhage's game How do neighborhoods of 0 funnel functions towards 0?
- $G_1(\mathcal{T}_{C_p(X)}, \mathsf{CD}_{C_p(X)})$ Tkachuk's game Do open sets of functions contain closed discrete subsets?
- $G_1(\Omega_{C_p(X),\mathbf{0}}, \Omega_{C_p(X),\mathbf{0}})$ (The countable fan tightness game) Do sequences witness closure?

Theorem (Tkachuk 2018 and Clontz-H. 2019)

Suppose X is a T_3 s-space. Then

- $G_1(\mathcal{N}[X^{<\omega}],\neg \Omega_X)$, $G_1(\mathcal{N}_{C_p(X)}(\mathbf{0}),\neg \Omega_{C_p(X),\mathbf{0}})$, and $G_1(\mathcal{T}_{C_p(X)}, \mathsf{CD}_{C_p(X)})$ are equivalent.
- $G_1(\Omega_X, \Omega_X)$ and $G_1(\Omega_{C_p(X),0}, \Omega_{C_p(X),0})$ are equivalent.
- These groups are dual to each other.
- l $\uparrow_{\sf pre}$ $G_1(\mathcal{T}_{C_p(X)},\mathsf{CD}_{C_p(X)})$ if and only if X is countable if and only if $C_p(X)$ is first countable.
- $\mathcal{S}_1(\mathcal{T}_{\mathcal{C}_\rho(X)}, \mathsf{CD}_{\mathcal{C}_\rho(X)})$ if and only if X is uncountable.

What is the answer to Tkachuk's question if instead of $C_p(X)$, we look at $C_k(X)$: continuous functions $f: X \to \mathbb{R}$ with the topology of uniform convergence on compact sets?

What is the answer to Tkachuk's question if instead of $C_p(X)$, we look at $C_k(X)$: continuous functions $f: X \to \mathbb{R}$ with the topology of uniform convergence on compact sets?

Basic Open Sets in $C_k(X)$

For $f : X \to \mathbb{R}$ continuous, $K \subseteq X$ compact, and $\varepsilon > 0$, set

$$
[f; K, \varepsilon] = \{g \in C_k(X) : (\forall x \in K)[|f(x) - g(x)| < \varepsilon]\}.
$$

These form a basis for the topology on $C_k(X)$.

- \bullet \mathcal{T}_X is the collection of open subsets of X,
- Ω_X is the collection of all open covers U with $X \notin U$ and so that whenever $F \subseteq X$ is finite, there is a $U \in \mathcal{U}$ so that $F \subseteq U$,
- for $F \subseteq X$ finite, $\mathcal{N}(F)$ is the collection of open sets U with $F \subseteq U$,
- $\mathcal{N}[X^{<\omega}] = \{\mathcal{N}(F): F \subseteq X \text{ is finite}\}$
- $\mathcal{K}(X)$ is the set of compact subsets of X,
- \mathcal{K}_X is the collection of all open covers U with $X \notin \mathcal{U}$ and so that if $K \subset X$ is compact, then there is a $U \in \mathcal{U}$ so that $K \subset U$,
- for $K \subseteq X$ compact, $\mathcal{N}(K)$ is the collection of open sets U with $K \subset U$.
- \bullet $\mathcal{N}[\mathcal{K}(X)] = \{\mathcal{N}(K) : K \subseteq X \text{ is compact}\}\$

Theorem (Tkachuk 2018 and Clontz-H. 2019)

Suppose X is a T_3 s-space. Then

- $G_1(\mathcal{N}[X^{<\omega}],\neg \Omega_X)$, $G_1(\mathcal{N}_{C_p(X)}(\mathbf{0}),\neg \Omega_{C_p(X),\mathbf{0}})$, and $G_1(\mathcal{T}_{C_p(X)}, \mathsf{CD}_{C_p(X)})$ are equivalent.
- $G_1(\Omega_X, \Omega_X)$ and $G_1(\Omega_{C_p(X),0}, \Omega_{C_p(X),0})$ are equivalent.
- These groups are dual to each other.
- l $\uparrow_{\sf pre}$ $G_1(\mathcal{T}_{C_p(X)},\mathsf{CD}_{C_p(X)})$ if and only if X is countable if and only if $C_p(X)$ is first countable.
- $\mathcal{S}_1(\mathcal{T}_{\mathcal{C}_\rho(X)}, \mathsf{CD}_{\mathcal{C}_\rho(X)})$ if and only if X is uncountable.

Answering Tkachuk's Question Again

Theorem (Caruvana-H. 2019)

Suppose X is a T_3 s-space. Then

- $G_1(\mathcal{N}[\mathcal{K}],\neg\mathcal{K}_X)$, $G_1(\mathcal{N}_{C_k(X)}(\mathbf{0}),\neg\Omega_{C_k(X),\mathbf{0}})$, and $G_1(\mathcal{T}_{C_k(X)},\mathsf{CD}_{C_k(X)})$ are equivalent.
- $G_1(\mathcal{K}_X, \mathcal{K}_X)$ and $G_1(\Omega_{C_k(X),0}, \Omega_{C_k(X),0})$ are equivalent.
- These groups are dual to each other.

Theorem (Caruvana-H. 2019)

Suppose X is a T_3 s-space. Then

- $G_1(\mathcal{N}[\mathcal{K}],\neg\mathcal{K}_X)$, $G_1(\mathcal{N}_{C_k(X)}(\mathbf{0}),\neg\Omega_{C_k(X),\mathbf{0}})$, and $G_1(\mathcal{T}_{C_k(X)},\mathsf{CD}_{C_k(X)})$ are equivalent.
- $G_1(\mathcal{K}_X, \mathcal{K}_X)$ and $G_1(\Omega_{C_k(X),0}, \Omega_{C_k(X),0})$ are equivalent.
- These groups are dual to each other.
- l $\uparrow_{\mathsf{pre}}\mathsf{G}_1(\mathcal{T}_{\mathsf{C}_k(X)},\mathsf{CD}_{\mathsf{C}_k(X)})$ if and only if X is hemicompact if and only if $C_k(X)$ is first countable.
- $\mathcal{S}_1(\mathcal{T}_{C_k(X)}, \mathsf{CD}_{C_k(X)})$ if and only if X is not hemicompact.

Note: Arens, Aurichi, Dias, Kočinac, Osipov, Scheepers, and others have shown similar connections between X, $C_p(X)$, and $C_k(X)$.

Definition

X is **hemicompact** if there is a sequence of compact sets K_n so that $X=\bigcup_n K_n$ and whenever $L\subseteq X$ is compact, there is an n so that $L\subseteq K_n.$

Hemicompact is strictly stronger than σ -compact.

Definition

X is **hemicompact** if there is a sequence of compact sets K_n so that $X=\bigcup_n K_n$ and whenever $L\subseteq X$ is compact, there is an n so that $L\subseteq K_n.$

Hemicompact is strictly stronger than σ -compact.

Questions

- **1** How can we use these games to assert that X is σ -compact?
- ² What's really happening behind the scenes that allows these results to be so similar?

The Big Picture

The following correspondences are really what matters here:

- $F \subseteq X$ finite generates $[0; F, 2^{-n}]$
- The range of a choice function for $\mathcal{N}[X^{<\omega}]$ forms a cover $\mathcal{U}\in\Omega_{\mathcal{X}}$
- Given a basic open set $U = [f, F, \varepsilon] \subseteq C_p(X)$ and another open set $V \subset X$ with $F \subset X$, there is a function g so that $g \in U$ and $g[X \setminus V] = \{n\}$
- The range of a choice function for $\mathcal{N}_{C_{\rho}(X)}(\boldsymbol{0})$ forms a set $\mathcal{F} \in \Omega_{\mathcal{C}_\rho(X),\mathbf{0}}.$

All of this happens in the compact-open setting as well.

The Big Picture

The following correspondences are really what matters here:

- $F \subseteq X$ finite generates $[0; F, 2^{-n}]$
- The range of a choice function for $\mathcal{N}[X^{<\omega}]$ forms a cover $\mathcal{U}\in\Omega_{\mathcal{X}}$
- Given a basic open set $U = [f, F, \varepsilon] \subseteq C_p(X)$ and another open set $V \subset X$ with $F \subset X$, there is a function g so that $g \in U$ and $g[X \setminus V] = \{n\}$
- The range of a choice function for $\mathcal{N}_{C_{\rho}(X)}(\boldsymbol{0})$ forms a set $\mathcal{F} \in \Omega_{\mathcal{C}_\rho(X),\mathbf{0}}.$

All of this happens in the compact-open setting as well.

Goals

- **4** Generalize these objects and their relationships.
- 2 Build a device to show that games are equivalent/dual using only the relationships between the objects.

Even More Notation

Suppose $A \subseteq \mathcal{P}(X)$.

- \bullet $\mathcal{O}(X, \mathcal{A})$ is the collection of all open covers U with $X \notin \mathcal{U}$ and so that if $A \in \mathcal{A}$, then there is a $U \in \mathcal{U}$ so that $A \subseteq U$.
- For $A \in \mathcal{A}$, $\mathcal{N}(A)$ is the set of all open sets U with $A \subseteq U$.

$$
\bullet \mathcal{N}[\mathcal{A}] = \{\mathcal{N}(\mathcal{A}) : \mathcal{A} \in \mathcal{A}\}.
$$

• $C_A(X)$ is the set of continuous functions $f : X \to \mathbb{R}$ with topology generated by sets of the form

$$
[f; A, \varepsilon] = \{ g \in C_{\mathcal{A}}(X) : (\forall x \in A) [|f(x) - g(x)| < \varepsilon] \}
$$

Generalizing Hemicompactness

The following is inspired by Gartside's work with the Tukey order and Telgársky's work on the point-open game.

Definition

Suppose $\mathbb{P} = (P, \leq)$ is a partial order and that $A, B \subseteq \mathbb{P}$. We say

 $\operatorname{cof}(\mathcal{A};\mathcal{B},\leq)=\omega$

if there is a sequence of $A_n \in \mathcal{A}$ so that for all $B \in \mathcal{B}$, there is an n so that $B < A_n$.

- $\operatorname{cof}(X^{<\omega};X^{<\omega},\subseteq) = \omega$ if and only if X is countable.
- $\operatorname{cof}(\mathcal{K}(X); X^{{<}\omega}, \subseteq) = \omega$ if and only if X is σ -compact.
- cof($\mathcal{K}(X)$; $\mathcal{K}(X)$, \subseteq) = ω if and only if X is hemicompact.

Suppose X is $T_{3.5}$ and $\mathcal{A} \subseteq \mathcal{P}(X)$.

- \bullet A is an **ideal base** if whenever $A_1, A_2 \in \mathcal{A}$, there is an $A_3 \in \mathcal{A}$ so that $A_1 \cup A_2 \subset A_3$.
- \bullet X is A-normal if whenever $A \in \mathcal{A}$, U is open, and $A \subseteq U$, there is a continuous function $f : X \to \mathbb{R}$ so that $f[A] = \{0\}$ and $f[X \setminus U] = \{1\}.$
- \bullet A is R-bounded if for all $A \in \mathcal{A}$ and $f : X \to \mathbb{R}$ continuous, $f[A]$ is bounded.

Theorem (Caruvana-H. 2019)

Let X be a $T_{3.5}$ -space and $A, B \subseteq \mathcal{P}(X)$ be ideal bases. Suppose A consists of closed sets, X is A -normal, and B is $\mathbb R$ -bounded.

- $G_1(\mathcal{N}[\mathcal{A}],\neg \mathcal{O}(X,\mathcal{B}))$, $G_1(\mathcal{N}_{C_\mathcal{A}(X)}(\mathbf{0}),\neg \Omega_{C_\mathcal{B}(X),\mathbf{0}})$, and $G_1(\mathcal{T}_{C_{\mathcal{A}}(X)}, \mathsf{CD}_{C_{\mathcal{B}}(X)})$ are equivalent.
- $G_1(\mathcal{O}(X,\mathcal{A}),\mathcal{O}(X,\mathcal{B}))$ and $G_1(\Omega_{C_{\mathcal{A}}(X),\mathbf{0}},\Omega_{C_{\mathcal{B}}(X),\mathbf{0}})$ are equivalent.
- These groups are dual to each other.
- l \uparrow_{pre} $G_1(\mathcal{T}_{\mathcal{C}_\mathcal{A}(X)}, \mathsf{CD}_{\mathcal{C}_\mathcal{B}(X)})$ if and only if

 $\mathsf{cof}(\mathcal{A} \times \omega; \mathcal{B} \times \omega, \subseteq) = \mathsf{cof}(\mathcal{N}_{\mathcal{C}_\mathcal{A}(\mathcal{X})}(\mathbf{0}); \mathcal{N}_{\mathcal{C}_\mathcal{B}(\mathcal{X})}(\mathbf{0}), \supseteq) = \omega$

Corollary (Caruvana-H. 2019)

 $\mathcal{S}_1(\mathcal{T}_{\mathcal{C}_k(X)}, \mathsf{CD}_{\mathcal{C}_\rho(X)})$ if and only if X is not σ -compact.

Clontz has developed a general tool for showing that two games are dual. We used this throughout.

- Let choice (\mathcal{A}) be the set of functions $\mathcal{C}:\mathcal{A}\to\bigcup\mathcal{A}$ so that $\mathcal{C}(\mathcal{A})\in\mathcal{A}$.
- \bullet A is a selection basis for B if whenever $B \in \mathcal{B}$, there is an $A \in \mathcal{A}$ so that $A \subseteq B$
- \bullet R is a reflection of A if

$$
\{\mathsf{ran}(C): C \in \mathsf{choice}(\mathcal{R})\}
$$

is a selection basis for A.

Theorem (Clontz 2018)

If R is a reflection of A, then $G_1(A, B)$ and $G_1(\mathcal{R}, \neg B)$ are dual.

Definition

Say that $G_1(\mathcal{A}, \mathcal{C}) \leq_{\Pi} G_1(\mathcal{B}, \mathcal{D})$ if

$$
\bullet \ \mathsf{I}\nmid_{\text{pre}} G_1(\mathcal{A},\mathcal{C}) \implies \mathsf{I}\nmid_{\text{pre}} G_1(\mathcal{B},\mathcal{D}),
$$

$$
\bullet \, \bot \npreceq G_1(\mathcal{A}, \mathcal{C}) \implies \bot \npreceq G_1(\mathcal{B}, \mathcal{D}),
$$

$$
\bullet\ \mathsf{II}\uparrow \mathsf{G}_1(\mathcal{A},\mathcal{C})\implies \mathsf{II}\uparrow \mathsf{G}_1(\mathcal{B},\mathcal{D}),\ \mathsf{and}\\
$$

$$
\bullet \ \mathsf{II}\uparrow_{\mathsf{mark}} G_1(\mathcal{A}, \mathcal{C}) \implies \mathsf{II}\uparrow_{\mathsf{mark}} G_1(\mathcal{B}, \mathcal{D}).
$$

This is transitive and if $G_1(\mathcal{A}, \mathcal{C}) \leq_{\text{II}} G_1(\mathcal{B}, \mathcal{D})$ and $G_1(\mathcal{B}, \mathcal{D}) \leq_{\text{II}} G_1(\mathcal{A}, \mathcal{C})$, then the games are equivalent.

Showing Games Are Equivalent

Theorem (Caruvana-H. 2019)

Let A , B , C , and D be collections. Suppose there are functions $\overleftarrow{\mathcal{T}}_{1,n}:\mathcal{B}\rightarrow\mathcal{A}$ and $\overrightarrow{T}_{\Pi,n}:\bigcup \mathcal{A}\times\mathcal{B}\to\bigcup \mathcal{B}$ so that \textbf{D} if $x \in \overleftarrow{\mathcal{T}}_{1,n}(B)$, then $\overrightarrow{\mathcal{T}}_{11,n}(x,B) \in B$ and $\textbf{2}$ if $x_n \in \overleftarrow{\mathcal{T}}_{1,n}(B_n)$ for all $n,$ then $\{x_n : n \in \omega\} \in \mathcal{C} \implies \{\overrightarrow{f}\}_{\mathsf{II},n}(x_n,B_n) : n \in \omega\} \in \mathcal{D}$ Then $G_1(\mathcal{A}, \mathcal{C}) \leq \mathcal{C}_1(\mathcal{B}, \mathcal{D})$.

Showing Games Are Equivalent

Theorem (Caruvana-H. 2019)

Let A , B , C , and D be collections. Suppose there are functions $\overleftarrow{\mathcal{T}}_{1,n}:\mathcal{B}\rightarrow\mathcal{A}$ and $\overrightarrow{T}_{\Pi,n}:\bigcup \mathcal{A}\times\mathcal{B}\to\bigcup \mathcal{B}$ so that \textbf{D} if $x \in \overleftarrow{\mathcal{T}}_{1,n}(B)$, then $\overrightarrow{\mathcal{T}}_{11,n}(x,B) \in B$ and $\textbf{2}$ if $x_n \in \overleftarrow{\mathcal{T}}_{1,n}(B_n)$ for all $n,$ then $\{x_n : n \in \omega\} \in \mathcal{C} \implies \{\overrightarrow{f}\}_{\mathsf{II},n}(x_n,B_n) : n \in \omega\} \in \mathcal{D}$ Then $G_1(\mathcal{A}, \mathcal{C}) \leq \mathcal{C}_1(\mathcal{B}, \mathcal{D})$.

(We also generalized results from Tkachuk and Pawlikowski to go from full strategies to limited strategies)

Thanks for Listening

