Selection Games on Continuous Functions

J.Holshouser (joint work with Chris Caruvana)

Department of Mathematics and Statistics University of South Alabama

2019 Fall Central Sectional Meeting

Given an open set U of continuous functions $f : X \to \mathbb{R}$, when can we guarantee that there is an infinite subset of U which is closed discrete?

More generally, given a sequence of open sets U_n , when can we guarantee that there are choices $f_n \in U_n$ so that $\{f_n : n \in \omega\}$ is closed discrete?

Selection Principles/Games

Suppose that ${\mathcal A}$ and ${\mathcal B}$ are collections of sets.

$S_1(\mathcal{A},\mathcal{B})$

For every sequence $(A_n : n \in \omega)$ of sets from A, there are $x_n \in A_n$ so that $\{x_n : n \in \omega\} \in B$

$G_1(\mathcal{A},\mathcal{B})$

 $\mathcal{S}_1(\mathcal{A},\mathcal{B})$ can be turned into a two-player game $\mathcal{G}_1(\mathcal{A},\mathcal{B})$:

- Player II wins a given run of the game if $\{x_n : n \in \omega\} \in \mathcal{B}$.
- Player I wins a given run of the game if $\{x_n : n \in \omega\} \notin \mathcal{B}$.

Perfect Information Strategies

Fix a game $G_1(\mathcal{A}, \mathcal{B})$.

Perfect Information Strategy For Player I

 σ is **winning** if it produces winning plays for I. If I has a winning strategy we write I $\uparrow G_1(\mathcal{A}, \mathcal{B})$.

Perfect Information Strategy for Player II

 τ is **winning** if it produces winning plays for II. If II has a winning strategy we write II $\uparrow G_1(\mathcal{A}, \mathcal{B})$.

Pre-Determined for Player I

If I has a winning pre-determined strategy we write I $\uparrow_{pre} G_1(\mathcal{A}, \mathcal{B})$

Markov Strategy for Player II

If II has a winning Markov tactic we write II $\uparrow_{mark} G_1(\mathcal{A}, \mathcal{B})$.

Dual and Equivalent Games

Equivalent Games

Say $G_1(\mathcal{A},\mathcal{C})$ and $G_1(\mathcal{B},\mathcal{D})$ are equivalent if

•
$$\mathsf{I}\uparrow_{pre} \mathsf{G}_1(\mathcal{A},\mathcal{C}) \iff \mathsf{I}\uparrow_{pre} \mathsf{G}_1(\mathcal{B},\mathcal{D}),$$

• $I \uparrow G_1(\mathcal{A}, \mathcal{C}) \iff I \uparrow G_1(\mathcal{B}, \mathcal{D}),$

•
$$\mathsf{II} \uparrow \mathsf{G}_1(\mathcal{A}, \mathcal{C}) \iff \mathsf{II} \uparrow \mathsf{G}_1(\mathcal{B}, \mathcal{D}),$$

• II
$$\uparrow_{mark} G_1(\mathcal{A}, \mathcal{C}) \iff \text{II} \uparrow_{mark} G_1(\mathcal{B}, \mathcal{D}).$$

Dual Games

Say $G_1(\mathcal{A}, \mathcal{C})$ and $G_1(\mathcal{B}, \mathcal{D})$ are **dual** if

- I $\uparrow_{pre} G_1(\mathcal{A}, \mathcal{C}) \iff$ II $\uparrow_{mark} G_1(\mathcal{B}, \mathcal{D}),$
- $I \uparrow G_1(\mathcal{A}, \mathcal{C}) \iff II \uparrow G_1(\mathcal{B}, \mathcal{D}),$
- $\mathsf{II} \uparrow G_1(\mathcal{A}, \mathcal{C}) \iff \mathsf{I} \uparrow G_1(\mathcal{B}, \mathcal{D}),$
- II $\uparrow_{mark} G_1(\mathcal{A}, \mathcal{C}) \iff I \uparrow_{pre} G_1(\mathcal{B}, \mathcal{D}).$

A Strength Hierarchy

 $\mathsf{II}\uparrow_{mark} G_1(\mathcal{A},\mathcal{B}) \Rightarrow \mathsf{II}\uparrow G(\mathcal{A},\mathcal{B}) \Rightarrow \mathsf{I} \not\uparrow G_1(\mathcal{A},\mathcal{B}) \Rightarrow \mathsf{I} \not\uparrow_{pre} G_1(\mathcal{A},\mathcal{B})$

$\mathsf{I} mid pre G_1(\mathcal{A}, \mathcal{B}) \iff S_1(\mathcal{A}, \mathcal{B})$

Notation

- \mathcal{T}_X is the collection of open subsets of X,
- Ω_X is the collection of all open covers \mathcal{U} with $X \notin \mathcal{U}$ and so that whenever $F \subseteq X$ is finite, there is a $U \in \mathcal{U}$ so that $F \subseteq U$,
- for $F \subseteq X$ finite, $\mathcal{N}(F)$ is the collection of open sets U with $F \subseteq U$,

•
$$\mathcal{N}[X^{<\omega}] = \{\mathcal{N}(F) : F \subseteq X \text{ is finite}\},\$$

 C_p(X) is the space of continuous functions f : X → ℝ with the topology of point-wise convergence. Its basis is sets of the form

$$[f; F, \varepsilon] = \{g \in C_{\rho}(X) : (\forall x \in F)[|f(x) - g(x)| < \varepsilon]\}.$$

where $F \subseteq X$ is finite,

- $\Omega_{X,x}$ is all sets A with $x \in \overline{A} \setminus A$,
- CD_X is the set of all closed discrete subsets of X

- G₁(Ω_X, Ω_X) A modification of the Rothberger game Do nice covers have nice countable subcovers?
- $G_1(\mathcal{N}[X^{<\omega}], \neg \Omega_X)$ A modification of the point-open game What does it take to fill out the space?
- $G_1(\mathcal{N}_{C_p(X)}(\mathbf{0}), \neg \Omega_{C_p(X),\mathbf{0}})$ Gruenhage's game How do neighborhoods of **0** funnel functions towards **0**?
- $G_1(\mathcal{T}_{C_p(X)}, CD_{C_p(X)})$ Tkachuk's game Do open sets of functions contain closed discrete subsets?
- $G_1(\Omega_{C_p(X),0}, \Omega_{C_p(X),0})$ (The countable fan tightness game) Do sequences witness closure?

Theorem (Tkachuk 2018 and Clontz-H. 2019)

Suppose X is a $T_{3.5}$ -space. Then

- $G_1(\mathcal{N}[X^{<\omega}], \neg \Omega_X)$, $G_1(\mathcal{N}_{C_{\rho}(X)}(\mathbf{0}), \neg \Omega_{C_{\rho}(X),\mathbf{0}})$, and $G_1(\mathcal{T}_{C_{\rho}(X)}, CD_{C_{\rho}(X)})$ are equivalent.
- $G_1(\Omega_X, \Omega_X)$ and $G_1(\Omega_{C_p(X), \mathbf{0}}, \Omega_{C_p(X), \mathbf{0}})$ are equivalent.
- These groups are dual to each other.
- I ↑_{pre} G₁(T_{C_p(X)}, CD_{C_p(X)}) if and only if X is countable if and only if C_p(X) is first countable.
- $S_1(\mathcal{T}_{C_p(X)}, CD_{C_p(X)})$ if and only if X is uncountable.

What is the answer to Tkachuk's question if instead of $C_p(X)$, we look at $C_k(X)$: continuous functions $f : X \to \mathbb{R}$ with the topology of uniform convergence on compact sets?

What is the answer to Tkachuk's question if instead of $C_p(X)$, we look at $C_k(X)$: continuous functions $f : X \to \mathbb{R}$ with the topology of uniform convergence on compact sets?

Basic Open Sets in $C_k(X)$

For $f: X \to \mathbb{R}$ continuous, $K \subseteq X$ compact, and $\varepsilon > 0$, set

$$[f; K, \varepsilon] = \{g \in C_k(X) : (\forall x \in K) [|f(x) - g(x)| < \varepsilon]\}.$$

These form a basis for the topology on $C_k(X)$.

- \mathcal{T}_X is the collection of open subsets of X,
- Ω_X is the collection of all open covers \mathcal{U} with $X \notin \mathcal{U}$ and so that whenever $F \subseteq X$ is finite, there is a $U \in \mathcal{U}$ so that $F \subseteq U$,
- for $F \subseteq X$ finite, $\mathcal{N}(F)$ is the collection of open sets U with $F \subseteq U$,
- $\mathcal{N}[X^{<\omega}] = \{\mathcal{N}(F) : F \subseteq X \text{ is finite}\}$

- $\mathcal{K}(X)$ is the set of compact subsets of X,
- \mathcal{K}_X is the collection of all open covers \mathcal{U} with $X \notin \mathcal{U}$ and so that if $K \subseteq X$ is compact, then there is a $U \in \mathcal{U}$ so that $K \subseteq U$,
- for $K \subseteq X$ compact, $\mathcal{N}(K)$ is the collection of open sets U with $K \subseteq U$,
- $\mathcal{N}[\mathcal{K}(X)] = \{\mathcal{N}(\mathcal{K}) : \mathcal{K} \subseteq X \text{ is compact}\}$

Theorem (Tkachuk 2018 and Clontz-H. 2019)

Suppose X is a $T_{3.5}$ -space. Then

- $G_1(\mathcal{N}[X^{<\omega}], \neg \Omega_X)$, $G_1(\mathcal{N}_{C_{\rho}(X)}(\mathbf{0}), \neg \Omega_{C_{\rho}(X),\mathbf{0}})$, and $G_1(\mathcal{T}_{C_{\rho}(X)}, CD_{C_{\rho}(X)})$ are equivalent.
- $G_1(\Omega_X, \Omega_X)$ and $G_1(\Omega_{C_p(X), \mathbf{0}}, \Omega_{C_p(X), \mathbf{0}})$ are equivalent.
- These groups are dual to each other.
- I ↑_{pre} G₁(T_{C_p(X)}, CD_{C_p(X)}) if and only if X is countable if and only if C_p(X) is first countable.
- $S_1(\mathcal{T}_{C_p(X)}, CD_{C_p(X)})$ if and only if X is uncountable.

Answering Tkachuk's Question Again

Theorem (Caruvana-H. 2019)

Suppose X is a $T_{3.5}$ -space. Then

- $G_1(\mathcal{N}[\mathcal{K}], \neg \mathcal{K}_X)$, $G_1(\mathcal{N}_{C_k(X)}(\mathbf{0}), \neg \Omega_{C_k(X),\mathbf{0}})$, and $G_1(\mathcal{T}_{C_k(X)}, CD_{C_k(X)})$ are equivalent.
- $G_1(\mathcal{K}_X, \mathcal{K}_X)$ and $G_1(\Omega_{C_k(X), \mathbf{0}}, \Omega_{C_k(X), \mathbf{0}})$ are equivalent.
- These groups are dual to each other.

Theorem (Caruvana-H. 2019)

Suppose X is a $T_{3.5}$ -space. Then

- $G_1(\mathcal{N}[\mathcal{K}], \neg \mathcal{K}_X)$, $G_1(\mathcal{N}_{C_k(X)}(\mathbf{0}), \neg \Omega_{C_k(X),\mathbf{0}})$, and $G_1(\mathcal{T}_{C_k(X)}, CD_{C_k(X)})$ are equivalent.
- $G_1(\mathcal{K}_X, \mathcal{K}_X)$ and $G_1(\Omega_{C_k(X), \mathbf{0}}, \Omega_{C_k(X), \mathbf{0}})$ are equivalent.
- These groups are dual to each other.
- I ↑_{pre} G₁(T_{C_k(X)}, CD_{C_k(X)}) if and only if X is hemicompact if and only if C_k(X) is first countable.
- $S_1(\mathcal{T}_{C_k(X)}, CD_{C_k(X)})$ if and only if X is not hemicompact.

Note: Arens, Aurichi, Dias, Kočinac, Osipov, Scheepers, and others have shown similar connections between X, $C_p(X)$, and $C_k(X)$.

Definition

X is **hemicompact** if there is a sequence of compact sets K_n so that $X = \bigcup_n K_n$ and whenever $L \subseteq X$ is compact, there is an n so that $L \subseteq K_n$.

Hemicompact is strictly stronger than σ -compact.

Definition

X is **hemicompact** if there is a sequence of compact sets K_n so that $X = \bigcup_n K_n$ and whenever $L \subseteq X$ is compact, there is an n so that $L \subseteq K_n$.

Hemicompact is strictly stronger than σ -compact.

Questions

- **1** How can we use these games to assert that X is σ -compact?
- What's really happening behind the scenes that allows these results to be so similar?

The Big Picture

The following correspondences are really what matters here:

- $F \subseteq X$ finite generates [**0**; $F, 2^{-n}$]
- The range of a choice function for $\mathcal{N}[X^{<\omega}]$ forms a cover $\mathcal{U}\in\Omega_X$
- Given a basic open set $U = [f; F, \varepsilon] \subseteq C_p(X)$ and another open set $V \subseteq X$ with $F \subseteq X$, there is a function g so that $g \in U$ and $g[X \smallsetminus V] = \{n\}$
- The range of a choice function for $\mathcal{N}_{C_{\rho}(X)}(\mathbf{0})$ forms a set $F \in \Omega_{C_{\rho}(X),\mathbf{0}}$.

All of this happens in the compact-open setting as well.

The Big Picture

The following correspondences are really what matters here:

- $F \subseteq X$ finite generates [**0**; $F, 2^{-n}$]
- The range of a choice function for $\mathcal{N}[X^{<\omega}]$ forms a cover $\mathcal{U}\in\Omega_X$
- Given a basic open set $U = [f; F, \varepsilon] \subseteq C_p(X)$ and another open set $V \subseteq X$ with $F \subseteq X$, there is a function g so that $g \in U$ and $g[X \smallsetminus V] = \{n\}$
- The range of a choice function for $\mathcal{N}_{C_{\rho}(X)}(\mathbf{0})$ forms a set $F \in \Omega_{C_{\rho}(X),\mathbf{0}}$.

All of this happens in the compact-open setting as well.

Goals

- Generalize these objects and their relationships.
- Build a device to show that games are equivalent/dual using only the relationships between the objects.

Even More Notation

Suppose $\mathcal{A} \subseteq \mathcal{P}(X)$.

- $\mathcal{O}(X, \mathcal{A})$ is the collection of all open covers \mathcal{U} with $X \notin \mathcal{U}$ and so that if $A \in \mathcal{A}$, then there is a $U \in \mathcal{U}$ so that $A \subseteq U$.
- For $A \in \mathcal{A}$, $\mathcal{N}(A)$ is the set of all open sets U with $A \subseteq U$.

•
$$\mathcal{N}[\mathcal{A}] = {\mathcal{N}(\mathcal{A}) : \mathcal{A} \in \mathcal{A}}.$$

C_A(X) is the set of continuous functions f : X → ℝ with topology generated by sets of the form

$$[f; A, \varepsilon] = \{g \in C_{\mathcal{A}}(X) : (\forall x \in A)[|f(x) - g(x)| < \varepsilon]\}$$

Generalizing Hemicompactness

The following is inspired by Gartside's work with the Tukey order and Telgársky's work on the point-open game.

Definition

Suppose $\mathbb{P} = (P, \leq)$ is a partial order and that $\mathcal{A}, \mathcal{B} \subseteq \mathbb{P}$. We say

 $\operatorname{cof}(\mathcal{A};\mathcal{B},\leq)=\omega$

if there is a sequence of $A_n \in A$ so that for all $B \in B$, there is an n so that $B \leq A_n$.

- $cof(X^{<\omega}; X^{<\omega}, \subseteq) = \omega$ if and only if X is countable.
- $cof(\mathcal{K}(X); X^{<\omega}, \subseteq) = \omega$ if and only if X is σ -compact.
- $cof(\mathcal{K}(X); \mathcal{K}(X), \subseteq) = \omega$ if and only if X is hemicompact.

Suppose X is $T_{3.5}$ and $\mathcal{A} \subseteq \mathcal{P}(X)$.

- \mathcal{A} is an **ideal base** if whenever $A_1, A_2 \in \mathcal{A}$, there is an $A_3 \in \mathcal{A}$ so that $A_1 \cup A_2 \subseteq A_3$.
- X is A-normal if whenever A ∈ A, U is open, and A ⊆ U, there is a continuous function f : X → ℝ so that f[A] = {0} and f[X \ U] = {1}.
- \mathcal{A} is \mathbb{R} -bounded if for all $A \in \mathcal{A}$ and $f : X \to \mathbb{R}$ continuous, f[A] is bounded.

Theorem (Caruvana-H. 2019)

Let X be a $T_{3.5}$ -space and $\mathcal{A}, \mathcal{B} \subseteq \mathcal{P}(X)$ be ideal bases. Suppose \mathcal{A} consists of closed sets, X is \mathcal{A} -normal, and \mathcal{B} is \mathbb{R} -bounded.

- $G_1(\mathcal{N}[\mathcal{A}], \neg \mathcal{O}(X, \mathcal{B})), G_1(\mathcal{N}_{C_{\mathcal{A}}(X)}(\mathbf{0}), \neg \Omega_{C_{\mathcal{B}}(X),\mathbf{0}})$, and $G_1(\mathcal{T}_{C_{\mathcal{A}}(X)}, CD_{C_{\mathcal{B}}(X)})$ are equivalent.
- $G_1(\mathcal{O}(X, \mathcal{A}), \mathcal{O}(X, \mathcal{B}))$ and $G_1(\Omega_{C_{\mathcal{A}}(X), \mathbf{0}}, \Omega_{C_{\mathcal{B}}(X), \mathbf{0}})$ are equivalent.
- These groups are dual to each other.
- I $\uparrow_{pre} G_1(\mathcal{T}_{C_{\mathcal{A}}(X)}, \mathsf{CD}_{C_{\mathcal{B}}(X)})$ if and only if

 $\mathsf{cof}(\mathcal{A}\times\omega;\mathcal{B}\times\omega,\subseteq)=\mathsf{cof}(\mathcal{N}_{\mathcal{C}_{\mathcal{A}}(X)}(\mathbf{0});\mathcal{N}_{\mathcal{C}_{\mathcal{B}}(X)}(\mathbf{0}),\supseteq)=\omega$

Corollary (Caruvana-H. 2019)

 $S_1(\mathcal{T}_{C_k(X)}, CD_{C_p(X)})$ if and only if X is not σ -compact.

J.Holshouser (joint work with Chris Caruvana)

Clontz has developed a general tool for showing that two games are dual. We used this throughout.

- Let choice(A) be the set of functions C : A → ∪ A so that C(A) ∈ A.
- A is a selection basis for B if whenever B ∈ B, there is an A ∈ A so that A ⊆ B
- \mathcal{R} is a **reflection** of \mathcal{A} if

$${ran(C): C \in choice(\mathcal{R})}$$

is a selection basis for \mathcal{A} .

Theorem (Clontz 2018)

If \mathcal{R} is a reflection of \mathcal{A} , then $G_1(\mathcal{A}, \mathcal{B})$ and $G_1(\mathcal{R}, \neg \mathcal{B})$ are dual.

Definition

Say that $G_1(\mathcal{A},\mathcal{C}) \leq_{\mathsf{H}} G_1(\mathcal{B},\mathcal{D})$ if

• I $\Uparrow_{pre} G_1(\mathcal{A}, \mathcal{C}) \implies$ I $\Uparrow_{pre} G_1(\mathcal{B}, \mathcal{D})$,

• I
$$\bigstar G_1(\mathcal{A}, \mathcal{C}) \implies$$
 I $\bigstar G_1(\mathcal{B}, \mathcal{D}),$

•
$$\mathsf{II}\uparrow \mathsf{G}_1(\mathcal{A},\mathcal{C}) \implies \mathsf{II}\uparrow \mathsf{G}_1(\mathcal{B},\mathcal{D})$$
, and

• II
$$\uparrow_{mark} G_1(\mathcal{A}, \mathcal{C}) \implies$$
 II $\uparrow_{mark} G_1(\mathcal{B}, \mathcal{D}).$

This is transitive and if $G_1(\mathcal{A}, \mathcal{C}) \leq_{\mathsf{II}} G_1(\mathcal{B}, \mathcal{D})$ and $G_1(\mathcal{B}, \mathcal{D}) \leq_{\mathsf{II}} G_1(\mathcal{A}, \mathcal{C})$, then the games are equivalent.

Showing Games Are Equivalent

Theorem (Caruvana-H. 2019)

Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$, and \mathcal{D} be collections. Suppose there are functions • $\overleftarrow{T}_{ln}: \mathcal{B} \to \mathcal{A}$ and • $\overrightarrow{T}_{\parallel n}$: $| \mathcal{A} \times \mathcal{B} \rightarrow | \mathcal{B}$ so that • if $x \in \overleftarrow{T}_{I,n}(B)$, then $\overrightarrow{T}_{II,n}(x,B) \in B$ and 2) if $x_n \in \overleftarrow{T}_{1,n}(B_n)$ for all *n*, then $\{x_n : n \in \omega\} \in \mathcal{C} \implies \{\overrightarrow{\mathcal{T}}_{\parallel n}(x_n, B_n) : n \in \omega\} \in \mathcal{D}$ Then $G_1(\mathcal{A}, \mathcal{C}) \leq_{II} G_1(\mathcal{B}, \mathcal{D})$.

Showing Games Are Equivalent

Theorem (Caruvana-H. 2019)

Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$, and \mathcal{D} be collections. Suppose there are functions • $\overleftarrow{T}_{ln}: \mathcal{B} \to \mathcal{A}$ and • $\overrightarrow{T}_{\parallel n}$: $| \mathcal{A} \times \mathcal{B} \rightarrow | \mathcal{B}$ so that • if $x \in \overleftarrow{T}_{l,n}(B)$, then $\overrightarrow{T}_{ll,n}(x,B) \in B$ and 2) if $x_n \in \overleftarrow{T}_{1,n}(B_n)$ for all *n*, then $\{x_n : n \in \omega\} \in \mathcal{C} \implies \{\overrightarrow{\mathcal{T}}_{\parallel n}(x_n, B_n) : n \in \omega\} \in \mathcal{D}$ Then $G_1(\mathcal{A}, \mathcal{C}) \leq_{II} G_1(\mathcal{B}, \mathcal{D})$.

(We also generalized results from Tkachuk and Pawlikowski to go from full strategies to limited strategies)

J.Holshouser (joint work with Chris Caruvana)

Thanks for Listening

J.Holshouser (joint work with Chris Caruvana)

Selection Games on Continuous Functions 25 / 25