Limited Information Strategies in Star Selection Games

Jared Holshouser (with Chris Caruvana)

Mathematics Department Norwich University

56th Spring Topology and Dynamical Systems Conference

[Limited Information Strategies in Star Selection Games](#page-15-0) 1 / 16

Selection Principles (Menger, Hurewicz 1924) (Scheepers 1996)

Suppose that A and B are collections.

$S_1(\mathcal{A}, \mathcal{B})$

 $S_1(\mathcal{A}, \mathcal{B})$ means that for all sequences A_n consisting of elements of \mathcal{A} , there are choices $x_n \in A_n$ so that $\{x_n : n \in \omega\} \in \mathcal{B}$.

$S_{fin}(\mathcal{A}, \mathcal{B})$

 $S_{fin}(\mathcal{A}, \mathcal{B})$ means that for all sequences A_n consisting of elements of \mathcal{A} , there are finite $F_n \subseteq A_n$ so that $\bigcup_n F_n \in \mathcal{B}$.

Let $\mathcal{O}(X)$ denote the open covers of X. A basic example of a selection principle is $S_1(\mathcal{O}(X), \mathcal{O}(X))$, a generalization of compactness that we refer to as Rothberger. 隯

- We can view the selection principle $S_1(\mathcal{A}, \mathcal{B})$ as a game process wherein player I plays sets A_n and player II responds with $x_n \in A_n$.
- Player II wins if $\{x_n : n \in \omega\} \in \mathcal{B}$. We call this game $G_1(\mathcal{A}, \mathcal{B})$. Otherwise player I wins.
- In this game framework it's natural to impose information conditions on the players. These create a hierarchy of statements. In the Rothberger case, this looks like

X is ctbl \to II wins $G_1(\mathcal{O}, \mathcal{O}) \to I$ doesn't win $G_1(\mathcal{O}, \mathcal{O}) \to S_1(\mathcal{O}, \mathcal{O})$

隯

Definition

Define $G_1(\mathcal{A}, \mathcal{C}) \leq H G_1(\mathcal{B}, \mathcal{D})$ as the conjunction of the following implications.

- **1** Two has a strategy for $G_1(\mathcal{A}, \mathcal{C}) \implies$ Two has a strategy of the same level for $G_1(\mathcal{B}, \mathcal{D})$.
- 2 One does not have a strategy for $G_1(\mathcal{A}, \mathcal{C}) \implies$ One does not have a strategy at that same level for $G_1(\mathcal{B}, \mathcal{D})$.
- This relation is transitive.
- There is a fin version of all of this.

隯

General Translation

If we can build the picture below, then $G_1(\mathcal{A}, \mathcal{C}) \leq_{\text{II}} G_1(\mathcal{B}, \mathcal{D})$.

There is a small modification of this that works simultaneously for G_1 and G_{fin} . [Limited Information Strategies in Star Selection Games](#page-0-0) 5 /

ω -Covers

A non-trivial open cover $\mathscr U$ of X is an ω -cover if for each finite $F \subseteq X$, there is a $U \in \mathscr{U}$ so that $F \subseteq U$. We use $\Omega(X)$ to refer to the collection of ω -covers.

[Limited Information Strategies in Star Selection Games](#page-0-0) 6 /

Stars

If $\mathscr U$ is an open cover of X and $A \subseteq X$, then $\mathrm{St}(A,\mathscr{U})=\bigcup\{U\in\mathscr{U}:U\cap A\neq\emptyset\}.$

Star Selections (Kocinac, 1999)

- The symbol $S_1^*(\mathcal{O}, \mathcal{B})$ says that for each sequence of open covers \mathscr{U}_n , there are open sets $U_n \in \mathscr{U}_n$ so that $\{St(U_n, \mathscr{U}_n) : n \in \omega\} \in \mathcal{B}$.
- The symbol $SS^*_{\mathcal{A}}(\mathcal{O}, \mathcal{B})$ says for each sequence of open covers \mathcal{U}_n , there is a sequence of $A_n \in \mathcal{A}$ so that $\{St(A_n, \mathcal{U}_n) : n \in \omega\} \in \mathcal{B}$.

Star covering properties appeared at least as early as 1991 (E.K. van Douwen, G.M. Reed, A.W. Roscoe and I.J. Tree).

Star Selection Principles are Selection Principles

Constellations and Galaxies

- If $\mathscr U$ is an open cover of X and A is a collection of subsets of X, then $\text{Cons}(\mathcal{A}, \mathcal{U}) = \{\text{St}(A, \mathcal{U}) : A \in \mathcal{A}\}.$
- If C is a collection of open covers of X and $f : \mathscr{C} \to \mathcal{P}(\mathcal{P}(X)),$ then Gal $(f, \mathscr{C}) = \{ \text{Cons}(f(\mathscr{U}), \mathscr{U}) : \mathscr{U} \in \mathscr{C} \}.$

Star Selections

- $S_1^*(\mathcal{O}, \mathcal{B})$ is equivalent to $S_1(\text{Gal}(\text{id}, \mathcal{O}), \mathcal{B})$.
- $SS^*_{\mathcal{A}}(\mathcal{O}, \mathcal{B})$ is equivalent to $S_1(\text{Gal}(\mathcal{A}, \mathcal{O}), \mathcal{B})$.

With this equivalence in mind, we will reference the corresponding games $G_1^*(0, \mathcal{B})$ and $SG_1^*(0, \mathcal{B})$ and note that the translation theorem can be applied to it.

隯

Definition (Pixley and Roy, 1969)

We define the topological space $PR(X)$ as follows:

- points in $PR(X)$ are finite subsets of X, and
- A basic open set has the from $[F, U] = \{G \subseteq X : F \subseteq G \subseteq U\},\$ where F and G are finite and U is open in X .

This topology is finer than the Fell topology and was initially created as an interesting space for counter-examples.

Theorem (Sakai, 2014)

Suppose X is regular. Then $S_{\Box}^*(\mathcal{O}(\text{PR}(X)), \mathcal{O}(\text{PR}(X))) \implies S_{\Box}(\Omega(X), \Omega(X)).$

We boost this up to the following result.

Theorem (Caruvana and Holshouser, 2022)

Assume X is regular. Then $G_{\Box}^{\ast}(\mathcal{O}(\text{PR}(X)), \mathcal{O}(\text{PR}(X))) \leq_{\Pi} G_{\Box}(\Omega(X), \Omega(X)).$

[Limited Information Strategies in Star Selection Games](#page-0-0) 10 /

$G_{\Box}^{\ast}(\mathcal{O}(\text{PR}(X)), \mathcal{O}(\text{PR}(X))) \leq_{\Pi} G_{\Box}(\Omega(X), \Omega(X))$

[Limited Information Strategies in Star Selection Games](#page-0-0) 11 /

$G_{\Box}^{\ast}(\mathcal{O}(\text{PR}(X)), \mathcal{O}(\text{PR}(X))) \leq_{\Pi} G_{\Box}(\Omega(X), \Omega(X))$

Theorem (Caruvana and Holshouser 2022)

There is a version of the translation theorem where $\overleftarrow{T}_{1,n}$ doesn't have to pick out an individual from A , but instead it picks out a subset of A .

[Limited Information Strategies in Star Selection Games](#page-0-0) 13 /

Star Selection in Uniform Spaces

Definition

Given a uniform space (X, \mathcal{E}) and a collection $\mathcal U$ of subsets of X, $\mathcal U$ is a uniform cover of X (with respect to \mathcal{E}) if there exists $E \in \mathcal{E}$ so that ${E[x] : x \in X}$ is a refinement of \mathscr{U} .

We will say a uniform cover is an **open uniform cover** if it consists of open sets.

Let $\mathcal{C}_{\mathcal{E}}(X)$ be the collection of all open uniform covers with respect to E.

Theorem (Caruvana and Holshouser, 2022)

Let (X, \mathcal{E}) be a uniform space. Then

$$
\mathsf{G}_{\Box}(\mathcal{C}_{\mathcal{E}}(X),\mathcal{O}_X) \equiv \mathsf{SG}^*_{X,\Box}(\mathcal{C}_{\mathcal{E}}(X),\mathcal{O}_X) \equiv \mathsf{G}^*_{\Box}(\mathcal{C}_{\mathcal{E}}(X),\mathcal{O}_X).
$$

This theorem extends a result of Kocinac (2003).

 $\mathsf{G}_{\square}(\mathcal{C}_{\mathcal{E}}(X),\mathcal{O}_X)\leq_{\text{II}}\mathsf{SG}^*_{X,\square}(\mathcal{C}_{\mathcal{E}}(X),\mathcal{O}_X)$

- $\bullet \mathscr{U} \sim_E \mathscr{V}$ means $\text{Cons}(X, \mathscr{U}) = \text{Cons}(X, \mathscr{V}).$
- For each open $V \in \mathscr{T}_X$, choose $x_V \in V$.
- Check that if $V_n \in \mathcal{V}_n \in [\mathcal{U}_n]_E$, then $\text{St}(x_{V_n}, \mathcal{V}_n) \in \text{Cons}(X, \mathcal{U}_n)$.
- Check that if $X = \bigcup_n V_n$, then $X = \bigcup_n \text{St}(x_{V_n}, V_n)$.

隳

Thanks for Listening

[Limited Information Strategies in Star Selection Games](#page-0-0) 16 / 16