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Selection Principles (Menger, Hurewicz 1924)
(Scheepers 1996)

Suppose that A and B are collections.

S1(A,B)
S1(A,B) means that for all sequences An consisting of elements of A,
there are choices xn ∈ An so that {xn : n ∈ ω} ∈ B.

Sfin(A,B)
Sfin(A,B) means that for all sequences An consisting of elements of A,
there are finite Fn ⊆ An so that

⋃
n Fn ∈ B.

Let O(X) denote the open covers of X. A basic example of a selection
principle is S1(O(X),O(X)), a generalization of compactness that we
refer to as Rothberger.
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Selection Games

We can view the selection principle S1(A,B) as a game process
wherein player I plays sets An and player II responds with
xn ∈ An.

Player II wins if {xn : n ∈ ω} ∈ B. We call this game G1(A,B).
Otherwise player I wins.

In this game framework it’s natural to impose information
conditions on the players. These create a hierarchy of statements.
In the Rothberger case, this looks like

X is ctbl → II wins G1(O,O)→ I doesn’t win G1(O,O)→ S1(O,O)
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Comparing Games

Definition

Define G1(A, C) ≤II G1(B,D) as the conjunction of the following implications.

1 Two has a strategy for G1(A, C) =⇒ Two has a strategy of the same
level for G1(B,D).

2 One does not have a strategy for G1(A, C) =⇒ One does not have a
strategy at that same level for G1(B,D).

This relation is transitive.

There is a fin version of all of this.
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General Translation

If we can build the picture below, then G1(A, C) ≤II G1(B,D).

There is a small modification of this that works simultaneously for G1

and Gfin.
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ω-Covers

ω-Covers

A non-trivial open cover U of X is an ω-cover if for each finite F ⊆ X,
there is a U ∈ U so that F ⊆ U . We use Ω(X) to refer to the
collection of ω-covers.
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Star Selections

Stars

If U is an open cover of X and A ⊆ X, then
St(A,U ) =

⋃
{U ∈ U : U ∩A ̸= ∅}.

Star Selections (Kocinac, 1999)

The symbol S∗
1(O,B) says that for each sequence of open covers

Un, there are open sets Un ∈ Un so that {St(Un,Un) : n ∈ ω} ∈ B.
The symbol SS∗

A(O,B) says for each sequence of open covers Un,
there is a sequence of An ∈ A so that {St(An,Un) : n ∈ ω} ∈ B.

Star covering properties appeared at least as early as 1991 (E.K. van
Douwen, G.M. Reed, A.W. Roscoe and I.J. Tree).
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Star Selection Principles are Selection Principles

Constellations and Galaxies

If U is an open cover of X and A is a collection of subsets of X,
then Cons(A,U ) = {St(A,U ) : A ∈ A}.
If C is a collection of open covers of X and f : C → P(P(X)),
then Gal(f,C ) = {Cons(f(U ),U ) : U ∈ C }.

Star Selections

S∗
1(O,B) is equivalent to S1(Gal(id,O),B).

SS∗
A(O,B) is equivalent to S1(Gal(A,O),B).

With this equivalence in mind, we will reference the corresponding
games G∗

1(O,B) and SG∗
1(O,B) and note that the translation theorem

can be applied to it.
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The Pixley-Roy Hyperspace

Definition (Pixley and Roy, 1969)

We define the topological space PR(X) as follows:

points in PR(X) are finite subsets of X, and

A basic open set has the from [F,U ] = {G ⊆ X : F ⊆ G ⊆ U},
where F and G are finite and U is open in X.

This topology is finer than the Fell topology and was initially created
as an interesting space for counter-examples.
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The Star Selection Game on the Pixley-Roy Hyperspace

Theorem (Sakai, 2014)

Suppose X is regular. Then
S∗
□(O(PR(X)),O(PR(X))) =⇒ S□(Ω(X),Ω(X)).

We boost this up to the following result.

Theorem (Caruvana and Holshouser, 2022)

Assume X is regular. Then
G∗

□(O(PR(X)),O(PR(X))) ≤II G□(Ω(X),Ω(X)).
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G∗□(O(PR(X)),O(PR(X))) ≤II G□(Ω(X),Ω(X))
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G∗□(O(PR(X)),O(PR(X))) ≤II G□(Ω(X),Ω(X))
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A Useful Refinement

Theorem (Caruvana and Holshouser 2022)

There is a version of the translation theorem where
←−
T I,n doesn’t have

to pick out an individual from A, but instead it picks out a subset of A.
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Star Selection in Uniform Spaces

Definition

Given a uniform space (X, E) and a collection U of subsets of X, U is
a uniform cover of X (with respect to E) if there exists E ∈ E so that
{E[x] : x ∈ X} is a refinement of U .
We will say a uniform cover is an open uniform cover if it consists of
open sets.
Let CE(X) be the collection of all open uniform covers with respect to
E .

Theorem (Caruvana and Holshouser, 2022)

Let (X, E) be a uniform space. Then

G□(CE(X),OX) ≡ SG∗
X,□(CE(X),OX) ≡ G∗

□(CE(X),OX).

This theorem extends a result of Kocinac (2003).
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G□(CE(X),OX) ≤II SG
∗
X,□(CE(X),OX)

U ∼E V means Cons(X,U ) = Cons(X,V ).

For each open V ∈ TX , choose xV ∈ V .

Check that if Vn ∈ Vn ∈ [Un]E , then St(xVn ,Vn) ∈ Cons(X,Un).

Check that if X =
⋃

n Vn, then X =
⋃

n St(xVn ,Vn).
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Thanks!

Thanks for Listening
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