Translation for a Star Selection Game on Pixley-Roy

Jared Holshouser (with Chris Caruvana)

Mathematics Department Norwich University

55th Spring Topology and Dynamical Systems Conference

Selection Principles (Menger, Hurewicz 1924) (Scheepers 1996)

Suppose that A and B are collections.

$S_1(\mathcal{A}, \mathcal{B})$

 $S_1(\mathcal{A}, \mathcal{B})$ means that for all sequences A_n consisting of elements of \mathcal{A} , there are choices $x_n \in A_n$ so that $\{x_n : n \in \omega\} \in \mathcal{B}$.

$S_{fin}(\mathcal{A}, \mathcal{B})$

 $S_{fin}(\mathcal{A}, \mathcal{B})$ means that for all sequences A_n consisting of elements of \mathcal{A} , there are finite $F_n \subseteq A_n$ so that $\bigcup_n F_n \in \mathcal{B}$.

Let $\mathcal{O}(X)$ denote the open covers of X. A basic example of a selection principle is $S_1(\mathcal{O}(X), \mathcal{O}(X))$, a generalization of compactness that we refer to as Rothberger. 隯

- We can view the selection principle $S_1(\mathcal{A}, \mathcal{B})$ as a game process wherein player I plays sets A_n and player II responds with $x_n \in A_n$.
- Player II wins if $\{x_n : n \in \omega\} \in \mathcal{B}$. We call this game $G_1(\mathcal{A}, \mathcal{B})$. Otherwise player I wins.
- In this game framework it's natural to impose information conditions on the players. These create a hierarchy of statements. In the Rothberger case, this looks like

X is ctbl \to II wins $G_1(\mathcal{O}, \mathcal{O}) \to I$ doesn't win $G_1(\mathcal{O}, \mathcal{O}) \to S_1(\mathcal{O}, \mathcal{O})$

Definition

Define $G_1(\mathcal{A}, \mathcal{C}) \leq H G_1(\mathcal{B}, \mathcal{D})$ as the conjunction of the following implications.

- **1** Two has a limited information strategy for $G_1(\mathcal{A}, \mathcal{C}) \implies$ Two has a strategy of the same level for $G_1(\mathcal{B}, \mathcal{D})$
- One does not have a limited information strategy for $G_1(\mathcal{A}, \mathcal{C}) \implies$ One does not have a strategy at that same level for $G_1(\mathcal{B}, \mathcal{D})$
- This relation is transitive.
- There is a fin version of all of this.

General Translation

Theorem (Caruvana and Holshouser 2019)

Let $\mathcal{A}, \mathcal{B}, \mathcal{C},$ and \mathcal{D} be collections. Suppose there are functions $\overleftarrow{T}_{\mathrm{I},n}:\mathcal{B}\to\mathcal{A}$ and

$$
\bullet \ \overrightarrow{T}_{\mathrm{II},n}: \bigcup \mathcal{A} \times \mathcal{B} \to \bigcup \mathcal{B}
$$

so that

\n- **0** if
$$
x \in \overleftarrow{T}_{1,n}(B)
$$
, then $\overrightarrow{T}_{\Pi,n}(x,B) \in B$ and
\n- **0** if $x_n \in \overleftarrow{T}_{1,n}(B_n)$ for all n, then
\n

$$
\{x_n : n \in \omega\} \in \mathcal{C} \implies \left\{\overrightarrow{T}_{\Pi,n}(x_n, B_n) : n \in \omega\right\} \in \mathcal{D}
$$

Then $G_1(\mathcal{A}, \mathcal{C}) \leq_{\text{II}} G_1(\mathcal{B}, \mathcal{D}).$

General Translation

There is a small modification of this that works simultaneously for G_1 and G_{fin} . 隯

ω -Covers

A non-trivial open cover $\mathscr U$ of X is an ω -cover if for each finite $F \subseteq X$, there is a $U \in \mathscr{U}$ so that $F \subseteq U$. We use $\Omega(X)$ to refer to the collection of ω -covers.

Stars

If $\mathscr U$ is an open cover of X and $A \subseteq X$, then $\mathrm{St}(A,\mathscr{U})=\bigcup\{U\in\mathscr{U}:U\cap A\neq\emptyset\}.$

Star Selections (Kocinac, 1999)

- The symbol $S_1^*(\mathcal{O}, \mathcal{B})$ says that for each sequence of open covers \mathscr{U}_n , there are open sets $U_n \in \mathscr{U}_n$ so that $\{St(U_n, \mathscr{U}_n) : n \in \omega\} \in \mathcal{B}$.
- The symbol $SS^*_{\mathcal{A}}(\mathcal{O}, \mathcal{B})$ says for each sequence of open covers \mathcal{U}_n , there is a sequence of $A_n \in \mathcal{A}$ so that $\{St(A_n, \mathcal{U}_n) : n \in \omega\} \in \mathcal{B}$.

Star covering properties appeared at least as early as 1991 (E.K. van Douwen, G.M. Reed, A.W. Roscoe and I.J. Tree).

Star Selection Principles are Selection Principles

Constellations and Galaxies

- If $\mathscr U$ is an open cover of X and A is a collection of subsets of X, then $\text{Cons}(\mathcal{A}, \mathcal{U}) = \{\text{St}(A, \mathcal{U}) : A \in \mathcal{A}\}.$
- If C is a collection of open covers of X and $f : \mathscr{C} \to \mathcal{P}(\mathcal{P}(X)),$ then Gal $(f, \mathscr{C}) = \{ \text{Cons}(f(\mathscr{U}), \mathscr{U}) : \mathscr{U} \in \mathscr{C} \}.$

Star Selections

- $S_1^*(\mathcal{O}, \mathcal{B})$ is equivalent to $S_1(\text{Gal}(\text{id}, \mathcal{O}), \mathcal{B})$.
- $SS^*_{\mathcal{A}}(\mathcal{O}, \mathcal{B})$ is equivalent to $S_1(\text{Gal}(\mathcal{A}, \mathcal{O}), \mathcal{B})$.

With this equivalence in mind, we will reference the corresponding game $G_1^*(\mathcal{O}, \mathcal{B})$ and note that the translation theorem can be applied to it.

隭

Definition (Pixley and Roy, 1969)

If A is an ideal of compact subsets of X, we define the topological space $PR_{\mathcal{A}}(X)$ as follows:

- \bullet The space is A.
- A basic open set has the from $[A, U] = \{B \in \mathcal{A} : A \subseteq B \subseteq U\}.$

 $PR(X)$ is the special case when A is the finite subsets of X.

Theorem (Sakai, 2014)

Suppose X is regular. Then $S_{\Box}^*(\mathcal{O}(\text{PR}(X)), \mathcal{O}(\text{PR}(X)))$ implies $S_{\square}(\Omega(X), \Omega(X)).$

- Can we get this to work for limited information strategies?
- Can we get this to work for longer games?
- Can we get this to work for $PR_A(X)$?

Some Topological Results

Theorem

If X is regular and $\mathcal A$ is an ideal of compact subsets of X, then

 $\psi(X) \leq \psi_k(X) \leq L_{\text{st}}(\text{PR}_A(X))$

Where

- $\bullet \psi(X)$ is the pseudocharacter of X: the least κ so that every point is the intersection κ open sets,
- $\bullet \psi_k(X)$ is the k-pseudocharacter of X: the least κ so that every compact set is the intersection κ open sets, and
- $L_{st}(Y)$ is the star Lindelof degree of Y: the least κ so that every open cover of X has a κ -sized subcollection whose stars form a cover.

Topological Corollary

Assume PR (X) is star Lindelof and X is regular. Then X is a G_{δ} space. In fact, each compact set is G_{δ} .

Combinatorial Proposition

Suppose X satisfies $S_1(\mathcal{A}, \mathcal{B})$ and fix a bijection $\beta : \omega^2 \to \omega$. Then, for a sequence $\langle A_n : n \in \omega \rangle$ from A, there is a selection $x_n \in A_n$ so that $\langle x_{\beta(n,m)} : m \in \omega \rangle \in \mathcal{B}$ for all $n \in \omega$.

Theorem (Caruvana and Holshouser, 2022)

Assume X is regular. Then $G_{\Box}^{\ast}(\mathcal{O}(\text{PR}(X)),\mathcal{O}(\text{PR}(X))) \leq_{\Pi} G_{\Box}(\Omega(X),\Omega(X)).$

- WLOG assume $PR(X)$ is star Lindelof. Then X is a G_{δ} space, say $\{x\} = \bigcap_n G_{x,n}$. For $F \subseteq X$ finite, set $G_{F,n} = \bigcup_{x \in F} G_{x,n}$. We assume the $G_{F,n}$ are descending in n.
- Choose a function $\gamma : \Omega(X) \times \mathrm{PR}(X) \to \mathcal{T}_X$ so that $\gamma(\mathcal{U}, F) \in \mathcal{U}$ and $F \subset \gamma(\mathscr{U}, F)$. Then set

$$
\mathscr{V}_{\mathscr{U},n}=\{[F,\gamma(\mathscr{U},F)\cap G_{F,n}]:F\in \mathrm{PR}(X)\}.
$$

Proof Outline

• Define
$$
\overleftarrow{T}_{1,n}(\mathcal{U}) = \text{Cons}(\mathcal{V}_{\mathcal{U},n}, \mathcal{V}_{\mathcal{U},n}).
$$

• Choose a function $\chi_{\mathscr{U},n} : \text{Cons}(\mathscr{V}_{\mathscr{U},n}, \mathscr{V}_{\mathscr{U},n}) \to \text{PR}(X)$ so that, letting $F = \chi_{\mathscr{U},n}(W)$,

 $W = St([F, \gamma(\mathcal{U}, F) \cap G_{Fn}], \mathcal{V}_{\mathcal{U},n}).$

- Define $\overrightarrow{T}_{\text{II},n}(W, \mathcal{U}) = \gamma(\mathcal{U}, \chi_{\mathcal{U},n}(W)).$
- Check the two criteria for $\overleftarrow{T}_{\mathrm{I},n}$ and $\overrightarrow{T}_{\mathrm{II},n}$.
	- Property 1 is by design,
	- Property 2 uses the combinatorial proposition, the fact that the $G_{F,n}$ are descending, and the fact that the F are finite.

隳

Thanks for Listening

[Translation for a Star Selection Game on Pixley-Roy](#page-0-0) 16 /

Jared Holshouser (with Chris Caruvana)