Selection Games in Hyperspace Topologies

Jared Holshouser (with Chris Caruvana)

Mathematics Department Norwich University

Fall 2021 Southeastern Sectional Meeting

躔

1 / 22

Jared Holshouser (with Chris Caruvana)

- Thank the Organizers
- **2** Hyperspace and Selection Game Preliminaries
- Prior Work of Kočinac et al. and Li
- Generalizing and Unifying Results

2/22

Selection Principles (Menger, Hurewicz 1924) (Scheepers 1996)

Suppose that \mathcal{A} and \mathcal{B} are collections.

$S_1(\mathcal{A},\mathcal{B})$

 $S_1(\mathcal{A}, \mathcal{B})$ means that for all sequences A_n consisting of elements of \mathcal{A} , there are choices $x_n \in A_n$ so that $\{x_n : n \in \omega\} \in \mathcal{B}$.

$S_{\mathrm{fin}}(\mathcal{A},\mathcal{B})$

 $S_{\text{fin}}(\mathcal{A}, \mathcal{B})$ means that for all sequences A_n consisting of elements of \mathcal{A} , there are finite $F_n \subseteq A_n$ so that $\bigcup_n F_n \in \mathcal{B}$.

- Let $\mathcal{O}(X)$ denote the open covers of X.
- Let \mathscr{D}_X denote the dense subsets of X.
- Let $\Omega_{X,x}$ denote the sets $A \subseteq X$ such that $x \in \overline{A}$.

Rothberger $S_1(\mathcal{O}(X), \mathcal{O}(X))$

躔

Strong Countable Fan Tightness $S_1(\Omega_{X,x}, \Omega_{X,x})$

- A perfect information (PI) strategy for either player One or Two is a strategy for responding to the other player that takes as inputs all of the previous plays of the game.
- A **Markov strategy** for player Two is a strategy that takes as inputs the current turn number and the most recent play of player One.
- A **pre-determined (PD) strategy** for player One is a strategy where the only input is the current turn number.
- A strategy is **winning** if following the strategy guarantees that the player will win the game.

6 / 22

Strategies

• Playing according to a PI strategy for One:

• Playing according to a PI strategy for Two:

• Playing according to a Markov strategy for Two:

• Playing according to a PD strategy for One:

A Strength Hierarchy

```
For the selection game G_1(\mathcal{A}, \mathcal{B}):

Two has a winning Markov Strategy

\downarrow

Two has a winning PI strategy

\downarrow

One has no winning PI strategy

\downarrow

One has no winning PD strategy \iff S_1(\mathcal{A}, \mathcal{B})
```

Game Equivalence

Definition

Define $G_1(\mathcal{A}, \mathcal{C}) \leq_{\mathrm{II}} G_1(\mathcal{B}, \mathcal{D})$ as the conjunction of the following implications.

- **1** Two has Mark in $G_1(\mathcal{A}, \mathcal{C}) \implies$ Two has a Mark in $G_1(\mathcal{B}, \mathcal{D})$
- **2** Two has PI strat in $G_1(\mathcal{A}, \mathcal{C}) \implies$ Two has a PI strat in $G_1(\mathcal{B}, \mathcal{D})$
- **3** One has no PI strat in $G_1(\mathcal{A}, \mathcal{C}) \implies$ One has no PI strat in $G_1(\mathcal{B}, \mathcal{D})$
- **(**) One has no PD strat in $G_1(\mathcal{A}, \mathcal{C}) \implies$ One has no PD strat in $G_1(\mathcal{B}, \mathcal{D})$
 - This relation is transitive.
 - if $G_1(\mathcal{A}, \mathcal{C}) \leq_{\mathrm{II}} G_1(\mathcal{B}, \mathcal{D})$ and $G_1(\mathcal{B}, \mathcal{D}) \leq_{\mathrm{II}} G_1(\mathcal{A}, \mathcal{C})$, we say the two games are **equivalent** and write $G_1(\mathcal{A}, \mathcal{C}) \equiv G_1(\mathcal{B}, \mathcal{D})$.
 - There is a fin version of all of this.

9 / 22

The Upper Fell Hyperspace Topology

Let $\mathbb{F}(X)$ denote the collection of closed subsets of X.

The Upper Fell Topology (Fell 1962)

The **Upper Fell Topology** on $\mathbb{F}(X)$ is generated by basic open sets of the form

$$(X \setminus K)^+ := \{F \in \mathbb{F}(X) : F \subseteq (X \setminus K)\}$$

where K is a compact subset of X.

Let $\mathbb{F}^+(X)$ denote $\mathbb{F}(X)$ endowed with the upper Fell topology. Note that this can also be done with finite subsets of X in place of compact sets.

The Upper Fell Hyperspace Topology

F with an open neighborhood $(X \setminus K)^+.$

(

The Upper Fell Hyperspace Topology

F with an open neighborhood $(X \setminus K)^+$.

The Hyperspace

建

Jared Holshouser (with Chris Caruvana)

The Fell Topology (Fell 1962)

The **Fell Topology** on $\mathbb{F}(X)$ is generated by basic open sets of the form

$$[K; V_1, \cdots, V_n] := \{ F \in \mathbb{F}(X) : F \subseteq (X \setminus K) \text{ and } F \cap V_j \neq \emptyset \}$$

where $K \subseteq X$ is compact and the V_1, \dots, V_n are open subsets of X.

Let $\mathbb{F}(X)$ denote $\mathbb{F}(X)$ endowed with the upper Fell topology. Note that this can also be done with finite subsets of X in place of compact sets.

Di Maio, Kočinac, and Meccariello

A non-trivial open cover \mathscr{U} of X is a k-cover if for all compact $K \subseteq X$, there is a $U \in \mathscr{U}$ so that $K \subseteq U$. Let $\mathcal{K}(X)$ denote the collection of k-covers of X.

Theorem 2005

- $S_{\Box}(\mathcal{K}(X), \mathcal{K}(X))$ if and only if $S_{\Box}(\mathscr{D}_{\mathbb{F}^+(X)}, \mathscr{D}_{\mathbb{F}^+(X)})$.
- If $G \subseteq X$ is closed, then $S_{\Box}(\mathcal{K}(X \setminus G), \mathcal{K}(X \setminus G))$ is equivalent to $S_{\Box}(\Omega_{\mathbb{F}^+(X),G}, \Omega_{\mathbb{F}^+(X),G}).$
- The Hurewicz versions of the selection principles are also equivalent.
- All of the above is true if compact sets are replaced with finite sets and k-covers are replaced with ω -covers.

A non-trivial open cover \mathscr{U} of X is a k_F -cover if for all compact $K \subseteq X$, and all finite sequences of open sets $V_1, \dots, V_n \subseteq X$ with the property that $(X \setminus K) \cap V_j \neq \emptyset$, there is a $U \in \mathscr{U}$ and a finite $F \subseteq X$ so that

- $K \subseteq U$,
- $F \cap V_j \neq \emptyset$ for all j, and
- $F \cap U = \emptyset$.

 $\mathcal{K}_F(X)$ is the collection of k_F -covers of X.

Theorem 2016

All of what Kocinac et al. proved in 2005 holds when \mathcal{K} is replaced with \mathcal{K}_F and $\mathbb{F}^+(X)$ is replaced with $\mathbb{F}(X)$. To expand on these results, we did the following.

- We worked with arbitrary ideals instead of compact/finite sets.
- We worked with selection games and different strength strategies instead of selection principles.
- We came up with a way to write all these proofs without working each individual situation separately.

Idealized Definitions

Let \mathcal{A} be a proper ideal consisting of closed subsets of X.

• The **upper** \mathcal{A} -topology on $\mathbb{F}(X)$ is generated by basic open sets of the form

$$(X \setminus A)^+ = \{F \in \mathbb{F}(X) : F \cap A = \emptyset\}$$

where $A \in \mathcal{A}$. Denote this as $\mathbb{F}(X, \mathcal{A}^+)$.

• The \mathcal{A} -topology on $\mathbb{F}(X)$ is generated by basic open sets of the form

$$[A; V_1, \cdots, V_n] = \{F \in \mathbb{F}(X) : F \cap A = \emptyset \text{ and } F \cap V_j \neq \emptyset\}$$

where $A \in \mathcal{A}$. Denote this as $\mathbb{F}(X, \mathcal{A})$.

- A non-trivial open cover \mathscr{U} of X is an \mathcal{A} -cover if for all $A \in \mathcal{A}$, there is a $U \in \mathscr{U}$ so that $A \subseteq U$. Denote these as $\mathcal{O}(X, \mathcal{A})$.
- Similarly, we can define \mathcal{A}_F -covers and denote the set of \mathcal{A}_F covers as $\mathcal{O}_F(X, \mathcal{A})$.

躔

Carurvana, Holshouser 2020

Assume that $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ are collections and that $\bigcup \mathcal{C} \subseteq \bigcup \mathcal{A}$ and $\bigcup \mathcal{D} \subseteq \bigcup \mathcal{B}$. Suppose that there is a bijection $\beta : \bigcup \mathcal{A} \to \bigcup \mathcal{B}$ so that

- $A \in \mathcal{A}$ if and only if $\beta[A] \in \mathcal{B}$, and
- $C \in \mathcal{C}$ if and only if $\beta[C] \in \mathcal{D}$.

Then $G_{\Box}(\mathcal{A}, \mathcal{C}) \equiv G_{\Box}(\mathcal{B}, \mathcal{D}).$

To translate from cover games on X to density/blade games on $\mathbb{F}(X)$, we use $\beta : \mathscr{T}_X \to \mathbb{F}(X)$ defined by $\beta(U) = X \setminus U$. This β has the following properties.

- $\mathfrak{U} \in \mathcal{O}(X, \mathcal{A}) \text{ iff } \beta[\mathscr{U}] \in \mathcal{D}_{\mathbb{F}(X, \mathcal{A}^+)}$
- **2** β takes localized \mathcal{A} -covers to blades in $\mathbb{F}(X, \mathcal{A}^+)$.
- $\mathfrak{O} \mathscr{U} \in \mathcal{O}_F(X, \mathcal{A}) \text{ iff } \beta[\mathscr{U}] \in \mathcal{D}_{\mathbb{F}(X, \mathcal{A})}$
- **(**) β takes localized \mathcal{A}_F -covers to blades in $\mathbb{F}(X, \mathcal{A})$.
- β respects groupability (and so will be useful for showing that the Hurewicz games are equivalent)

Caruvana and Holshouser

Theorem 2020

Fix a topological space $X, G \in \mathbb{F}(X)$, and ideals \mathcal{A} and \mathcal{B} consisting of closed sets. Then

- $G_{\Box}(\mathcal{O}(X,\mathcal{A}),\mathcal{O}(X,\mathcal{B})) \equiv G_{\Box}(\mathcal{D}_{\mathbb{F}(X,\mathcal{A}^+)},\mathcal{D}_{\mathbb{F}(X,\mathcal{B}^+)}),$

and

- $G_{\Box}(\mathcal{O}_F(X,\mathcal{A}),\mathcal{O}_F(X,\mathcal{B})) \equiv G_{\Box}(\mathcal{D}_{\mathbb{F}(X,\mathcal{A})},\mathcal{D}_{\mathbb{F}(X,\mathcal{B})}),$
- $G_{\Box}(\mathcal{O}_F(X,\mathcal{A}),\mathcal{O}_F^{gp}(X,\mathcal{B})) \equiv G_{\Box}(\mathcal{D}_{\mathbb{F}(X,\mathcal{A})},\mathcal{D}_{\mathbb{F}(X,\mathcal{B})}^{gp}).$

- What about Pixley-Roy?
- In our paper, we applied β individually to the localized cover situations and to the Hurewicz context. Is there are a way to use β once and achieve all the results at once?
- Kočinac et al. and Li both draw connections between tightness on $\mathbb{F}(X)$ and covering properties of X. We can handle some of those connections within the selection games framework, but T-tightness eluded us. Can the T-tightness connection be made to fit into our framework?

Thanks for Listening

Jared Holshouser (with Chris Caruvana)

Selection Games in Hyperspace Topologies

22 / 22