Successes and Failures in Translating Strategies Across Selection Games

Jared Holshouser (with Chris Caruvana)

Mathematics Department Norwich University

Carolinas Topology Seminar - Fall 2021

[Successes and Failures in Translating Strategies Across Selection Games](#page-37-0) 1 / 36

隯

Jared Holshouser (with Chris Caruvana)

Suppose X is a topological space.

- Lindelöf: every open cover of X has a countable subcover.
- Separable: X has a countable dense subset.
- Countable Tightness: if x is in the closure of A, then there is a countable $B \subseteq A$ so that x is in the closure of B.

Rothberger

[Successes and Failures in Translating Strategies Across Selection Games](#page-0-0) 3 / 36

Strong Countable Fan Tightness

Selection Principles (Menger, Hurewicz 1924) (Scheepers 1996)

Suppose that A and B are collections.

$S_1(\mathcal{A}, \mathcal{B})$

 $S_1(\mathcal{A}, \mathcal{B})$ means that for all sequences $\langle A_n \rangle$ consisting of elements of \mathcal{A} , there are choices $x_n \in A_n$ so that $\{x_n : n \in \omega\} \in \mathcal{B}$.

$S_{\text{fin}}(\mathcal{A}, \mathcal{B})$

 $S_{fin}(A, B)$ means that for all sequences $\langle A_n \rangle$ consisting of elements of A, there are finite $F_n \subseteq A_n$ so that $\bigcup_n F_n \in \mathcal{B}$.

> [Successes and Failures in Translating Strategies Across Selection Games](#page-0-0) 5 / 36

- Let $\mathcal{O}(X)$ denote the open covers of X.
- Let \mathscr{D}_X denote the dense subsets of X.
- Let $\Omega_{X,x}$ denote the sets $A \subseteq X$ such that $x \in \overline{A}$.

Note that

- X is Rothberger if and only if $S_1(\mathcal{O}(X), \mathcal{O}(X)).$
- X is selectively separable if and only if $S_{fin}(\mathscr{D}_X, \mathscr{D}_X)$.
- \bullet X has strong countable fan tightness at x if and only if $S_1(\Omega_{X,x}, \Omega_{X,x}).$

- A perfect information (PI) strategy for either player One or Two is a strategy for responding to the other player that takes as inputs all of the previous plays of the game.
- A Markov strategy for player Two is a strategy that takes as inputs the current turn number and the most recent play of player One.
- A pre-determined (PD) strategy for player One is a strategy where the only input is the current turn number.
- A strategy is winning if following the strategy guarantees that the player will win the game.

Strategies

• Playing according to a PI strategy for One:

$$
\begin{array}{c|cc}\nI & \sigma(\emptyset) & \sigma(x_0) & \sigma(x_0, x_1) & \cdots \\
\hline\nII & x_0 & x_1 & x_2 & \cdots\n\end{array}
$$

• Playing according to a PI strategy for Two:

$$
\frac{I}{II} \begin{array}{c|c|c|c} A_0 & A_1 & A_2 & \cdots \\ \hline I & \tau(A_0) & \tau(A_0, A_1) & \tau(A_0, A_1, A_2) & \cdots \end{array}
$$

Playing according to a Markov strategy for Two:

$$
\begin{array}{c|cc}\nI & A_0 & A_1 & A_2 & \cdots \\
\hline\nII & \tau(A_0,0) & \tau(A_1,1) & \tau(A_2,2) & \cdots\n\end{array}
$$

• Playing according to a PD strategy for One:

$$
\frac{I \mid \sigma(0) \mid \sigma(1) \mid \sigma(2) \mid \cdots}{II \mid x_0 \mid x_1 \mid x_2 \mid \cdots}
$$

[Successes and Failures in Translating Strategies Across Selection Games](#page-0-0) 8.

A Strength Hierarchy

```
For the selection game G_1(\mathcal{A}, \mathcal{B}):
    Two has a winning Markov Strategy
                             ⇓
          Two has a winning PI strategy
                             ⇓
         One has no winning PI strategy
                             ⇓
        One has no winning PD strategy \iff S_1(\mathcal{A}, \mathcal{B})
```
[Successes and Failures in Translating Strategies Across Selection Games](#page-0-0) 9 / 36

Game Equivalence

Definition

Define $G_1(\mathcal{A}, \mathcal{C}) \leq H G_1(\mathcal{B}, \mathcal{D})$ as the conjunction of the following implications.

- **1** Two has Mark in $G_1(\mathcal{A}, \mathcal{C}) \implies$ Two has a Mark in $G_1(\mathcal{B}, \mathcal{D})$
- **2** Two has PI strat in $G_1(\mathcal{A}, \mathcal{C}) \implies$ Two has a PI strat in $G_1(\mathcal{B}, \mathcal{D})$
- **3** One has no PI strat in $G_1(\mathcal{A}, \mathcal{C}) \implies$ One has no PI strat in $G_1(\mathcal{B}, \mathcal{D})$
- \bullet One has no PD strat in $G_1(\mathcal{A}, \mathcal{C}) \implies$ One has no PD strat in $G_1(\mathcal{B}, \mathcal{D})$
- This relation is transitive.
- if $G_1(\mathcal{A}, \mathcal{C}) \leq_{\text{II}} G_1(\mathcal{B}, \mathcal{D})$ and $G_1(\mathcal{B}, \mathcal{D}) \leq_{\text{II}} G_1(\mathcal{A}, \mathcal{C})$, we say the two games are **equivalent** and write $G_1(\mathcal{A}, \mathcal{C}) \equiv G_1(\mathcal{B}, \mathcal{D})$.
- There is a G_{fin} version of all of this.

Let $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ be collections.

Monotonicity

- If $\mathcal{B} \subseteq \mathcal{A}$, then $G_{\Box}(\mathcal{A}, \mathcal{C}) \leq_{\Pi} G_{\Box}(\mathcal{B}, \mathcal{C})$.
- If $\mathcal{D} \subseteq \mathcal{C}$, then $G_{\Box}(\mathcal{A}, \mathcal{D}) \leq_{\Pi} G_{\Box}(\mathcal{A}, \mathcal{C})$.

As an application of this law, $G_1(\Omega_{X,x}, \Omega_{X,x}) \leq_{\Pi} G_1(\mathcal{D}_X, \Omega_{X,x})$ for any space X and point $x \in X$.

We will focus on connections between games played on a space X and games played on a space Y that was built out of X. In particular, we look at when Y is

- \bullet the space of closed subsets of X, and
- the space of continuous functions $f: X \to \mathbb{R}$.

These constructions lines up with multiple natural topologies, and we can work with a fair amount of them.

Let $\mathbb{F}(X)$ denote the collection of closed subsets of X.

The Upper Fell Topology (Fell 1962)

The Upper Fell Topology on $F(X)$ is generated by basic open sets of the form

$$
(U)^+ := \{ F \in \mathbb{F}(X) : F \subseteq U \}
$$

where U is the complement of a compact set.

A basic neighborhood of F has the form $(X \setminus K)^+$ where K is compact and $F \cap K = \emptyset$. Let $\mathbb{F}^+(X)$ be the closed subsets of X with the upper Fell topology.

The Fell Topology on the Closed Subsets of X

F with an open neighborhood $(X \setminus K)^+$.

[Successes and Failures in Translating Strategies Across Selection Games](#page-0-0) 14 / 36

Jared Holshouser (with Chris Caruvana)

The Fell Topology on the Closed Subsets of X

F with an open neighborhood $(X \setminus K)^+$.

The Hyperspace $(U)^{+}$ Ę

[Successes and Failures in Translating Strategies Across Selection Games](#page-0-0) 15 / 36

- $U \subseteq X$ is open if and only if $X \setminus U$ is a point in $\mathbb{F}^+(X)$.
- If $D \subseteq \mathbb{F}^+(X)$ is dense, then $\{X \setminus F : F \in D\}$ is an open cover of X.
- In fact, if $K \subseteq X$ is compact, then there is an $F \in D$ so that $K \subseteq X \setminus F$.

A non-trivial open cover $\mathscr U$ of X is a k-cover if for all compact $K \subseteq X$, there is a $U \in \mathscr{U}$ so that $K \subseteq U$. $\mathcal{K}(X)$ is the collection of k-covers of X.

Proposition

- $\mathscr{U} \in \mathcal{K}(X)$ if and only if $\{X \setminus U : U \in \mathscr{U}\}\in \mathscr{D}_{\mathbb{F}^{+}(X)}$.
- $D \in \mathscr{D}_{\mathbb{F}^+(X)}$ if and only if $\{X \setminus F : F \in D\} \in \mathcal{K}(X)$.

[Successes and Failures in Translating Strategies Across Selection Games](#page-0-0) 17 / 36

Assume that $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ are collections and that $\bigcup \mathcal{C} \subseteq \bigcup \mathcal{A}$ and $\bigcup \mathcal{D} \subseteq \bigcup \mathcal{B}$. Suppose that there is a bijection $\beta : \bigcup \mathcal{A} \to \bigcup \mathcal{B}$ so that

- $A \in \mathcal{A}$ if and only if $\beta[A] \in \mathcal{B}$, and
- $C \in \mathcal{C}$ if and only if $\beta[C] \in \mathcal{D}$.

Then $G_{\square}(\mathcal{A}, \mathcal{C}) \equiv G_{\square}(\mathcal{B}, \mathcal{D}).$

[Successes and Failures in Translating Strategies Across Selection Games](#page-0-0) 18 / 36

 $G_\square(\mathcal{K}(X),\mathcal{K}(X))\equiv G_\square(\mathcal{D}_{\mathbb{F}^+(X)},D_{\mathbb{F}^+(X)}).$

We can prove this by defining $\beta: \mathcal{T}_X \to \mathbb{F}^+(X)$ as $\beta(U) = X \setminus U$ and applying the proposition.

> [Successes and Failures in Translating Strategies Across Selection Games](#page-0-0) 19 / 36

 $G_\square(\mathcal{K}(X),\mathcal{K}(X))\equiv G_\square(\mathcal{D}_{\mathbb{F}^+(X)},D_{\mathbb{F}^+(X)}).$

We can prove this by defining $\beta: \mathcal{T}_X \to \mathbb{F}^+(X)$ as $\beta(U) = X \setminus U$ and applying the proposition.

Following Li's definition of \mathcal{K}_F -covers and letting $\mathbb{F}(X)$ denote the full Fell topology, we can also prove that $G_{\Box}(\mathcal{K}_F(X), \mathcal{K}_F(X)) \equiv G_{\Box}(\mathcal{D}_{\mathbb{F}(X)}, D_{\mathbb{F}(X)})$ using the same map β .

> [Successes and Failures in Translating Strategies Across Selection Games](#page-0-0) 19 / 36

Set $C(X)$ to be collection of all continuous functions $f: X \to \mathbb{R}$.

The Topology of Point-Wise Convergence

 $C(X)$ with this topology will be denoted $C_p(X)$. The open sets are generated by sets of the form:

$$
[f; \{x_0, \cdots, x_n\}, \varepsilon] = \{g : |f(x_0) - g(x_0)| < \varepsilon, \cdots, |f(x_n) - g(x_n)| < \varepsilon\}
$$

where f is continuous, $x_0, \dots, x_n \in X$, and $\varepsilon > 0$.

[Successes and Failures in Translating Strategies Across Selection Games](#page-0-0) 20 / 36

Common Topologies on the Space of Continuous Functions

f with a neighborhood $[f; F, \varepsilon]$.

Jared Holshouser (with Chris Caruvana)

/ 36

- If $f: X \to \mathbb{R}$ is continuous, and $n \in \omega$, then $f^{-1}[(-2^{-n}, 2^{-n})]$ is open.
- If $A \subseteq C_p(X)$ has 0 in its closure, then for a fixed n,

$$
\mathscr{U} = \{f^{-1}[(-2^{-n},2^{-n})]: f \in A\}
$$

is an open cover of X.

• In fact, if $F \subseteq X$ is finite, then there is a $U \in \mathscr{U}$ so that $F \subseteq U$.

[Successes and Failures in Translating Strategies Across Selection Games](#page-0-0) 22 / 36

ω -Covers

A non-trivial open cover $\mathscr U$ of X is an ω -cover if for all finite $F \subset X$, there is a $U \in \mathscr{U}$ so that $F \subset U$. $\Omega(X)$ is the collection of ω -covers of X.

Proposition

If $A \in \Omega_{C_p(X),\mathbf{0}}$, then

$$
\mathscr{U}(A,n) := \{ f^{-1}[(-2^{-n}, 2^{-n})] : f \in A \} \in \Omega(X)
$$

Proof.

Suppose $A \in \Omega_{C_p(X),0}$. Let $F \subseteq X$ be finite. Then $[0; F, 2^{-n}]$ is an open nhood of 0. So there is an $f \in A$ so that $f \in [0, F, 2^{-n}]$. Then $F \subseteq f^{-1}[(-2^{-n}, 2^{-n})].$

> [Successes and Failures in Translating Strategies Across Selection Games](#page-0-0) 23 / 36

隭

ω -Covers

Proposition

Suppose $f_n \in C_p(X)$ are so that

$$
\{f_n^{-1}[(-2^{-n}, 2^{-n})] : n \in \omega\} \in \Omega(X).
$$

Then $\{f_n : n \in \omega\} \in \Omega_{C_n(X),\mathbf{0}}$.

Proof.

Consider a basic open nhood $[0; F, \varepsilon]$. Since F is finite, there is an n so that $2^{-n} < \varepsilon$ and $F \subseteq f_n^{-1}[(-2^{-n}, 2^{-n})]$. Thus $f_n \in [0; F, \varepsilon]$.

[Successes and Failures in Translating Strategies Across Selection Games](#page-0-0) 24

Assume that $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ are collections and that $\bigcup \mathcal{C} \subseteq \bigcup \mathcal{A}$ and $\bigcup \mathcal{D} \subseteq \bigcup \mathcal{B}$. Suppose that there is a function $\varphi : \bigcup \mathcal{B} \times \omega \to \bigcup \mathcal{A}$ so that

• If $B \in \mathcal{B}$ and $n \in \omega$, then $\varphi[B \times \{n\}] \in \mathcal{A}$, and

• If $y_n \in B_n$ and $\{\varphi(y_n, n) : n \in \omega\} \in \mathcal{C}$, then $\{y_n : n \in \omega\} \in \mathcal{D}$. Then $G_1(\mathcal{A}, \mathcal{C}) \leq_{\text{II}} G_1(\mathcal{B}, \mathcal{D}).$

Turn Based Translation

[Successes and Failures in Translating Strategies Across Selection Games](#page-0-0) 26 / 36

 $G_1(\Omega(X), \Omega(X)) \leq_{\text{II}} G_1(\Omega_{C_n(X),0}, \Omega_{C_n(X),0}).$

We can prove this by defining $\varphi: C_p(X) \times \omega \to \mathcal{T}_X$ as $\varphi(f, n) = f^{-1}[(-2^{-n}, 2^{-n})]$ and applying our facts about ω -covers.

> [Successes and Failures in Translating Strategies Across Selection Games](#page-0-0) 27 / 36

 $G_1(\Omega(X), \Omega(X)) \leq_{\text{II}} G_1(\Omega_{C_n(X),0}, \Omega_{C_n(X),0}).$

We can prove this by defining $\varphi: C_p(X) \times \omega \to \mathcal{T}_X$ as $\varphi(f, n) = f^{-1}[(-2^{-n}, 2^{-n})]$ and applying our facts about ω -covers.

This same φ shows $G_1(\mathcal{K}(X), \mathcal{K}(X)) \leq_{\text{II}} G_1(\Omega_{C_k(X),0}, \Omega_{C_k(X),0}).$

[Successes and Failures in Translating Strategies Across Selection Games](#page-0-0) 27 / 36

Definition

Recall that space X is **completely regular** if for every point $x \in X$ and closed set $F \subseteq X$ with $x \notin F$, there is a continuous function $f: X \rightarrow [0,1]$ so that $f(x) = 0$ and $f|_F = 1$.

Note that you can also find continuous functions to separate finite sets from closed sets, and even separate compact sets from closed sets.

Complete Regularity

Suppose that X is Hausdorff and completely regular.

Proposition

If $\mathscr{U} \in \Omega(X)$, then

$$
A(\mathscr{U}) := \{ f : (\exists U \in \mathscr{U})[f|_{X \setminus U} = 1] \} \in \Omega_{C_p(X),0}.
$$

Proof.

Suppose $\mathscr{U} \in \Omega(X)$. Consider a basic open nhood $[0; F, \varepsilon]$. There is a $U \in \mathscr{U}$ so that $F \subseteq U$. There is then a continuous $f: X \to \mathbb{R}$ so that $f|_F = \mathbf{0}$ and $f|_{X\setminus U} = \mathbf{1}$. Then $f \in [\mathbf{0}; F, \varepsilon]$.

> [Successes and Failures in Translating Strategies Across Selection Games](#page-0-0) 2014 / 36

Proposition

Suppose $\{f_n : n \in \omega\} \in \Omega_{C_n(X),\mathbf{0}}$ and that $U_n \subseteq X$ are open so that $f_n|_{X\setminus U_n} = 1$. Then $\{U_n : n \in \omega\} \in \Omega(X)$.

Proof.

Suppose $F \subseteq X$ is finite. Then $[0; F, 1]$ is open nhood of 0, so there is an *n* so that $f_n \in [0; F, 1]$. Thus $F \subseteq f_n^{-1}[(-1, 1)]$. $f_n|_{X \setminus U_n} = 1$, this means that $F \cap (X \setminus U_n) = \emptyset$. Therefore $F \subseteq U_n$.

> [Successes and Failures in Translating Strategies Across Selection Games](#page-0-0) 30 / 36

General Translation

Theorem (Caruvana and Holshouser 2019)

Let $\mathcal{A}, \mathcal{B}, \mathcal{C},$ and \mathcal{D} be collections. Suppose there are functions $\overleftarrow{T}_{\mathrm{I},n}:\mathcal{B}\to\mathcal{A}$ and

$$
\bullet \ \overrightarrow{T}_{\mathrm{II},n}: \bigcup \mathcal{A} \times \mathcal{B} \to \bigcup \mathcal{B}
$$

so that

\n- $$
\bullet
$$
 if $x \in \overleftarrow{T}_{1,n}(B)$, then $\overrightarrow{T}_{\Pi,n}(x,B) \in B$ and
\n- \bullet if $x_n \in \overleftarrow{T}_{1,n}(B_n)$ for all n, then
\n

$$
\{x_n : n \in \omega\} \in \mathcal{C} \implies \left\{\overrightarrow{T}_{\Pi,n}(x_n, B_n) : n \in \omega\right\} \in \mathcal{D}
$$

Then $G_1(\mathcal{A}, \mathcal{C}) \leq_{\text{II}} G_1(\mathcal{B}, \mathcal{D}).$

General Translation

[Successes and Failures in Translating Strategies Across Selection Games](#page-0-0) 32 / 36

Let X be a Hausdorff completely regular space.

Theorem (Caruvana and Holshouser 2019) $G_1(\Omega_{C_n(X),\mathbf{0}},\Omega_{C_n(X),\mathbf{0}})\leq_{\text{II}} G_1(\Omega(X),\Omega(X))$ Define $\overleftarrow{T}_{1,n}(\mathscr{U}) = A(\mathscr{U})$ and set $\overrightarrow{T}_{\Pi,n}(f,\mathscr{U})$ to be a choice of $U \in \mathscr{U}$ so that $f[X \setminus U] = \{1\}$ if possible, and X otherwise. Confirm that $\overleftarrow{T}_{\mathrm{I},n}$ and $\overrightarrow{T}_{\mathrm{II},n}$ are well-defined, If $f \in \overleftarrow{T}_{\mathrm{I},n}(\mathscr{U})$, then $\overrightarrow{T}_{\mathrm{II},n}(f,\mathscr{U}) \in \mathscr{U}$, and • If \mathscr{U}_n are ω -covers, f_n and $U_n \in \mathscr{U}_n$ are so that $f_n[X \setminus U_n] = \{1\},$ and $\mathbf{0} \in \{f_n : n \in \omega\}$, then $\{U_n : n \in \omega\}$ is an ω -cover.

> [Successes and Failures in Translating Strategies Across Selection Games](#page-0-0) 333 / 36

A Game Reduction That Does Not Use Translation

Theorem

$G_1(\Omega,\Omega) \leq_{\text{II}} G_1(\mathcal{O},\mathcal{O}).$

- Player II has a winning (Markov) strategy in $G_1(\Omega, \Omega)$ if and only if they have a winning (Markov) strategy in $G_1(\mathcal{O}, \mathcal{O})$.
- Using a result of Pawlikowski, Player I has a winning strat in $G_1(\mathcal{O}, \mathcal{O})$ if and only if they have winning PD strat.
- Using the generalization of Pawlikowski, Player I has a winning strat in $G_1(\Omega,\Omega)$ if and only if they have winning PD strat.
- Using the bijection between ω and ω^2 , $S_1(\Omega,\Omega)$ is equivalent $S_1(\mathcal{O}, \mathcal{O}).$

- The game reductions that came from translations all generalize to different ideals. In particular, they work both in reference to compact sets and to finite sets.
- $G_1(\Omega,\Omega) \leq_{\text{II}} G_1(\mathcal{O},\mathcal{O}),$ but $G_1(\mathcal{K},\mathcal{K}) \leq_{\text{II}} G_1(\mathcal{O},\mathcal{O}).$

Thanks for Listening

[Successes and Failures in Translating Strategies Across Selection Games](#page-0-0) 36 / 36

Jared Holshouser (with Chris Caruvana)