Limited Information Strategies and Discrete Selectivity

J.Holshouser

Department of Mathematics and Statistics University of South Alabama

Pure Math Seminar

J.Holshouser

Limited Information Strategies and Discrete Selectivity 1 / 30

Suppose X is a topological space.

- $C_p(X)$ is the space of continuous functions $f: X \to \mathbb{R}$
- It is endowed with the topology of pointwise convergence.

Suppose X is a topological space.

- $C_p(X)$ is the space of continuous functions $f: X \to \mathbb{R}$
- It is endowed with the topology of pointwise convergence.
- It will be convenient to assume that X is Hausdorff and completely regular (for every closed $C \subseteq X$ and $x \in X \setminus C$, there is a continuous function $f : X \to \mathbb{R}$ so that f(x) = 0 and $f[C] = \{1\}$).

To define the topology on $C_p(X)$ using open sets, we use the following neighborhoods:

Definition

If
$$f: X \to \mathbb{R}$$
 is continuous, $F = \{x_1, \cdots, x_n\} \subseteq X$, and $\varepsilon > 0$, then

$$[f, F, \varepsilon] = \{g \in C_p(X) : |g(x_i) - f(x_i)| < \varepsilon \text{ for } 1 \le i \le n\}$$

To define the topology on $C_p(X)$ using open sets, we use the following neighborhoods:

Definition

If $f: X \to \mathbb{R}$ is continuous, $F = \{x_1, \cdots, x_n\} \subseteq X$, and $\varepsilon > 0$, then

$$[f, F, \varepsilon] = \{g \in C_p(X) : |g(x_i) - f(x_i)| < \varepsilon \text{ for } 1 \le i \le n\}$$

Varying over F and ε forms a neighborhood basis at f.

The concept of a closed discrete selection was isolated by Sanchez and Tkachuk in 2017.

Closed Discrete Selection

For every sequence $(U_n : n \in \omega)$ of open subsets of X, there are points $x_n \in U_n$ so that $\{x_n : n \in \omega\}$ is closed and discrete.

The concept of a closed discrete selection was isolated by Sanchez and Tkachuk in 2017.

Closed Discrete Selection

For every sequence $(U_n : n \in \omega)$ of open subsets of X, there are points $x_n \in U_n$ so that $\{x_n : n \in \omega\}$ is closed and discrete.

Note that if X is first countable (or even has one point with a countable neighborhood basis), then it cannot have closed discrete selection. The converse is not generally true.

Tkachuk, 2017

Suppose X is Hausdorff and completely regular. Then the following are equivalent:

- $C_p(X)$ fails to satisfy closed discrete selection
- X is countable
- $C_p(X)$ is first-countable

If $C_p(X)$ fails to satisfy closed discrete selection, then X is countable:

- Suppose X is uncountable.
- Consider a sequence $[f_n, F_n, \varepsilon]$ of basic open sets in $C_p(X)$.
- Since X is uncountable, we can find a point $x^* \in X \setminus F_n$.
- We can find continuous functions g_n so that $g_n|_{F_n} = f_n$ and $g_n(x^*) = n$.
- Then $g_n \in [f_n, F_n, \varepsilon]$ and $\{g_n : n \in \omega\}$ is closed discrete.

Suppose that ${\mathcal A}$ and ${\mathcal B}$ are collections of sets.

$S_1(\mathcal{A},\mathcal{B})$

For every sequence $(A_n : n \in \omega)$ of sets from A, there are $C_n \in A_n$ so that $\{C_n : n \in \omega\} \in B$

$S_{FIN}(\mathcal{A},\mathcal{B})$

For every sequence $(A_n : n \in \omega)$ of sets from \mathcal{A} , there are finite $F_n \subseteq A_n$ so that $\bigcup_n F_n \in \mathcal{B}$

Let \mathcal{O} be the open covers of X. Then $S_1(\mathcal{O}, \mathcal{O})$ and $S_{FIN}(\mathcal{O}, \mathcal{O})$ are both strengthenings of the Lindelof property.

- $S_1(\mathcal{O}, \mathcal{O})$ is called the Rothberger property.
- $S_{FIN}(\mathcal{O}, \mathcal{O})$ is called the Menger property.

Let \mathcal{O} be the open covers of X. Then $S_1(\mathcal{O}, \mathcal{O})$ and $S_{FIN}(\mathcal{O}, \mathcal{O})$ are both strengthenings of the Lindelof property.

- $S_1(\mathcal{O}, \mathcal{O})$ is called the Rothberger property.
- $S_{FIN}(\mathcal{O}, \mathcal{O})$ is called the Menger property.

$$S_1(\mathcal{O}, \mathcal{O}) \Rightarrow S_{FIN}(\mathcal{O}, \mathcal{O}) \Rightarrow \mathsf{Lindelof}$$

and

$$\mathsf{Compact} \Rightarrow \sigma - \mathsf{Compact} \Rightarrow S_{\mathsf{FIN}}(\mathcal{O}, \mathcal{O}) \Rightarrow \mathsf{Lindelof}$$

 ${\mathcal S}_\square({\mathcal A},{\mathcal B})$ can be turned into a two-player game.

- The game is played over rounds indexed by the naturals.
- At round *n*, player I plays a set A_n from A and player II responds by playing a selection C_n from A_n .
- If those selections are singletons, then the game is $G_1(\mathcal{A}, \mathcal{B})$. If they are finite sets, then the game is $G_{FIN}(\mathcal{A}, \mathcal{B})$.
- Player II wins a given run of the game $(A_0, C_0, A_1, C_1, \cdots)$ if $\bigcup_n C_n \in \mathcal{B}$.
- If player II does not win, then player I wins.

Perfect Information Strategies

Fix a game $G_{\Box}(\mathcal{A}, \mathcal{B})$.

- A perfect information strategy for player I takes in a run of $G_{\Box}(\mathcal{A}, \mathcal{B})$ up to some round *n* and outputs a set $A_{n+1} \in \mathcal{A}$.
- A perfect information strategy for player II takes in a run of G_□(A, B) up to some round n and outputs a selection C_n from I's most recent move.

Fix a game $G_{\Box}(\mathcal{A}, \mathcal{B})$.

- A perfect information strategy for player I takes in a run of $G_{\Box}(\mathcal{A}, \mathcal{B})$ up to some round *n* and outputs a set $A_{n+1} \in \mathcal{A}$.
- A perfect information strategy for player II takes in a run of G_□(A, B) up to some round n and outputs a selection C_n from I's most recent move.
- A strategy σ for player I is winning if the run
 (σ(∅), C₀, σ(C₀), C₁, ···) wins for I no matter what selections II
 makes. If I has a winning strategy we write I ↑ G_□(A, B).
- A strategy τ for player II is winning if the run
 (A₀, τ(A₀), A₁, τ(A₀, A₁), · · ·) wins for II no matter what sets player I
 plays. If II has a winning strategy we write *II* ↑ *G*_□(*A*, *B*).

- A Markov tactic for II is a strategy τ(A, n) which takes in only the round number and the most recent move of I. If II has a winning Markov tactic we write II ↑_{mark} G_□(A, B).
- A pre-determined strategy for I is a strategy σ(n) which takes in only the round number. If I has a winning pre-determined strategy we write I ↑_{pre} G_□(A, B).

$$I \uparrow_{pre} G(\mathcal{A}, \mathcal{B}) \Rightarrow I \uparrow G(\mathcal{A}, \mathcal{B}) \Rightarrow II \notin G(\mathcal{A}, \mathcal{B})$$
$$II \uparrow_{mark} G(\mathcal{A}, \mathcal{B}) \Rightarrow II \uparrow G(\mathcal{A}, \mathcal{B}) \Rightarrow I \notin G(\mathcal{A}, \mathcal{B})$$
$$II \uparrow G(\mathcal{A}, \mathcal{B}) \Rightarrow S(\mathcal{A}, \mathcal{B})$$
$$I \notin_{pre} G(\mathcal{A}, \mathcal{B}) \iff S(\mathcal{A}, \mathcal{B})$$

Useful Selection Games

- $G_1(\mathcal{O}, \mathcal{O})$ is the Rothberger game
- $G_{FIN}(\mathcal{O}, \mathcal{O})$ is the Menger game

Useful Selection Games

- $G_1(\mathcal{O}, \mathcal{O})$ is the Rothberger game
- $G_{FIN}(\mathcal{O}, \mathcal{O})$ is the Menger game
- The point-open game is traditionally played with player I choosing points x_n and player II choosing open sets U_n ∋ x_n. Player I wins if {U_n : n ∈ ω} is an open cover.

- $G_1(\mathcal{O}, \mathcal{O})$ is the Rothberger game
- $G_{FIN}(\mathcal{O}, \mathcal{O})$ is the Menger game
- The point-open game is traditionally played with player I choosing points x_n and player II choosing open sets U_n ∋ x_n. Player I wins if {U_n : n ∈ ω} is an open cover.
- Cast as a selection game, this looks like G₁(P, ¬O), where P is the collection of point bases and ¬O consists of sequences of opens sets which are not open covers.
- The closed discrete selection game is $G_1(\mathcal{T}, CD)$, where \mathcal{T} is the collection of open sets and CD is the collection of closed discrete subsets of X.

- $I \uparrow G_1(\mathcal{P}, \neg \mathcal{O})$ if and only if $II \uparrow G_1(\mathcal{O}, \mathcal{O})$
- $II \uparrow G_1(\mathcal{P}, \neg \mathcal{O})$ if and only if $I \uparrow G_1(\mathcal{O}, \mathcal{O})$
- $I \uparrow_{pre} G_1(\mathcal{P}, \neg \mathcal{O})$ if and only if X is countable.

Proof

- $I \uparrow G_1(\mathcal{P}, \neg \mathcal{O}) \text{ implies } II \uparrow G_1(\mathcal{O}, \mathcal{O})$:
 - Let σ be a winning strategy for I in $G_1(\mathcal{P}, \neg \mathcal{O})$.
 - Say $\sigma(\emptyset) = x_0$.
 - We need to define a strategy τ for II in $G_1(\mathcal{O}, \mathcal{O})$.
 - Suppose \mathcal{U}_0 has been played by I in $G_1(\mathcal{O}, \mathcal{O})$. Then we can find a $U_0 \in \mathcal{U}$ so that $x_0 \in \mathcal{U}_0$. Set $\tau(\mathcal{U}_0) = U_0$.
 - Pretend II has repsonded in $G_1(\mathcal{P}, \neg \mathcal{O})$ with U_0 . Set $x_1 = \sigma(x_0, U_0)$.
 - Now suppose I plays U_1 in $G_1(\mathcal{O}, \mathcal{O})$ in response to $\tau(\mathcal{U}_0)$. Then there is a $U_1 \in \mathcal{U}_1$ so that $x_1 \in U_1$. Set $\tau(\mathcal{U}_1) = U_1$.
 - Continue in this way to inductively define τ. Because σ is winning for
 I in G₁(P, ¬O), {τ(U_n) : n ∈ ω} will be an open cover.

Closed Discrete Selections of Functions II

Tkachuk, 2017

Suppose X is Hausdorff and completely regular. Then the following are equivalent:

- $C_p(X)$ fails to satisfy closed discrete selection
- X is countable
- $C_p(X)$ is first-countable

Equivalently, in the language of games:

Tkachuk, 2017

Suppose X is Hausdorff and completely regular. Then the following are equivalent:

- $I \uparrow_{pre} G_1(\mathcal{T}_{C_p(X)}, CD_{C_p(X)})$
- $I \uparrow_{pre} G_1(\mathcal{P}_X, \neg \mathcal{O}_X)$
- $C_p(X)$ is first-countable

Closed Discrete Selections of Functions II

Tkachuk was also able to prove a partial result for perfect information strategies:

Tkachuk, 2017

Suppose X is Hausdorff and completely regular. Then the following are equivalent:

•
$$I \uparrow G_1(\mathcal{T}_{C_p(X)}, CD_{C_p(X)})$$

•
$$I \uparrow G_1(\mathcal{P}_X, \neg \mathcal{O}_X)$$

Also, if $II \uparrow G(\mathcal{T}_{C_p(X)}, CD_{C_p(X)})$, then $II \uparrow G_1(\mathcal{P}_X, \neg \mathcal{O}_X)$.

Tkachuk was also able to prove a partial result for perfect information strategies:

Tkachuk, 2017

Suppose X is Hausdorff and completely regular. Then the following are equivalent:

•
$$I \uparrow G_1(\mathcal{T}_{C_p(X)}, CD_{C_p(X)})$$

•
$$I \uparrow G_1(\mathcal{P}_X, \neg \mathcal{O}_X)$$

Also, if $II \uparrow G(\mathcal{T}_{C_{\rho}(X)}, CD_{C_{\rho}(X)})$, then $II \uparrow G_{1}(\mathcal{P}_{X}, \neg \mathcal{O}_{X})$.

Is it true that if $II \uparrow G_1(\mathcal{P}_X, \neg \mathcal{O}_X)$, then $II \uparrow G(\mathcal{T}_{C_p(X)}, CD_{C_p(X)})$?

Consider a topological space (X, \mathcal{T}) .

- \mathcal{U} is an ω -cover of X if whenever $F \subseteq X$ is finite, there is a $U \in \mathcal{U}$ so that $F \subseteq U$.
- Let Ω_X be the collection of ω -covers of X.
- For F ⊆ X finite, let N[F] = {U ∈ T : F ⊆ U}. We can then consider F_X = {N[F] : F ⊆ X is finite}.

Consider a topological space (X, \mathcal{T}) .

- \mathcal{U} is an ω -cover of X if whenever $F \subseteq X$ is finite, there is a $U \in \mathcal{U}$ so that $F \subseteq U$.
- Let Ω_X be the collection of ω -covers of X.
- For F ⊆ X finite, let N[F] = {U ∈ T : F ⊆ U}. We can then consider F_X = {N[F] : F ⊆ X is finite}.
- We can now define the finite-open game $G_1(\mathcal{F},\neg\mathcal{O})$ and its variant $G_1(\mathcal{F},\neg\Omega)$
- We can also define $G_1(\Omega, \Omega)$.

Point-Open Versus Finite Open

Proposition

The following are equivalent:

- $I \uparrow G_1(\mathcal{P}, \neg \mathcal{O})$
- $I \uparrow G_1(\mathcal{F}, \neg \mathcal{O})$
- $I \uparrow G_1(\mathcal{F}, \neg \Omega)$
- $II \uparrow G_1(\mathcal{O}, \mathcal{O})$
- $II \uparrow G_1(\Omega, \Omega)$

Point-Open Versus Finite Open

Proposition

The following are equivalent:

- $I \uparrow G_1(\mathcal{P}, \neg \mathcal{O})$
- $I \uparrow G_1(\mathcal{F}, \neg \mathcal{O})$
- $I \uparrow G_1(\mathcal{F}, \neg \Omega)$
- $II \uparrow G_1(\mathcal{O}, \mathcal{O})$
- $II \uparrow G_1(\Omega, \Omega)$

What Tkachuk actually showed was that $I \uparrow G_1(\mathcal{T}_{C_p(X)}, CD_{C_p(X)})$ if and only if $I \uparrow G_1(\mathcal{F}, \neg \Omega)$ and that if $II \uparrow G_1(\mathcal{T}_{C_p(X)}, CD_{C_p(X)})$, then $II \uparrow G_1(\mathcal{F}, \neg \Omega)$.

Point-Open Versus Finite Open II

Proposition

- If $II \uparrow G_1(\mathcal{F}, \neg \Omega)$, then $II \uparrow G_1(\mathcal{P}, \neg \mathcal{O})$.
- $G_1(\mathcal{F}, \neg \Omega)$ and $G_1(\Omega, \Omega)$ are dual.
- It is consistent with ZFC that there is a space X where I ↑ G₁(O, O) but I ↑ G₁(Ω, Ω)
- Thus it is consistent with ZFC that there is a space X where *II* ↑ *G*₁(*P*, ¬*O*), but *II* ↑ *G*₁(*F*, ¬Ω).

Point-Open Versus Finite Open II

Proposition

- If $II \uparrow G_1(\mathcal{F}, \neg \Omega)$, then $II \uparrow G_1(\mathcal{P}, \neg \mathcal{O})$.
- $G_1(\mathcal{F}, \neg \Omega)$ and $G_1(\Omega, \Omega)$ are dual.
- It is consistent with ZFC that there is a space X where I ↑ G₁(O, O) but I ↑ G₁(Ω, Ω)
- Thus it is consistent with ZFC that there is a space X where *II* ↑ *G*₁(*P*, ¬*O*), but *II* ↑ *G*₁(*F*, ¬Ω).

With this in mind, the proper question is: does $II \uparrow G_1(\mathcal{F}_X, \neg \Omega_X)$ imply $II \uparrow G(\mathcal{T}_{C_p(X)}, CD_{C_p(X)})$?

Clontz/Holshouser 2018

The following are equivalent.

- $II \uparrow G_1(\mathcal{F}_X, \neg \Omega_X)$
- $I \uparrow G_1(\Omega_X, \Omega_X)$
- $II \uparrow G(\mathcal{T}_{C_p(X)}, CD_{C_p(X)})$
- $II \uparrow_{mark} G_1(\mathcal{F}_X, \neg \Omega_X)$
- $I \uparrow_{pre} G_1(\Omega_X, \Omega_X)$, i.e. X is not Rothberger with respect to Ω -covers
- $II \uparrow_{mark} G(\mathcal{T}_{C_p(X)}, CD_{C_p(X)})$

Suppose X is a topological space.

- $C_k(X)$ is the space of continuous functions $f: X \to \mathbb{R}$.
- It is endowed with the compact-open topology ("Uniform Convergence on Compact Sets").
- If $f: X \to \mathbb{R}$ is continuous, $K \subseteq X$ is compact, and $\varepsilon > 0$, then

$$[f, K, \varepsilon] = \{g \in C_{\rho}(X) : |g(x) - f(x)| < \varepsilon \text{ for all } x \in K\}$$

These sets form a basis for the topology on $C_k(X)$.

Suppose X is a topological space.

- $C_k(X)$ is the space of continuous functions $f: X \to \mathbb{R}$.
- It is endowed with the compact-open topology ("Uniform Convergence on Compact Sets").
- If $f: X \to \mathbb{R}$ is continuous, $K \subseteq X$ is compact, and $\varepsilon > 0$, then

$$[f, K, \varepsilon] = \{g \in C_{\rho}(X) : |g(x) - f(x)| < \varepsilon \text{ for all } x \in K\}$$

These sets form a basis for the topology on $C_k(X)$.

What happens when we play the closed discrete game on $C_k(X)$?

Consider a topological space (X, \mathcal{T}) .

- Let K(X) be the space of compact subsets of X.
- U is a k-cover of X if whenever K ⊆ X is compact, there is a U ∈ U so that K ⊆ U.
- Let \mathcal{K}_X be the collection of *k*-covers of *X*.
- For $K \subseteq X$ compact, let $\mathcal{N}[K] = \{U \in \mathcal{T} : K \subseteq U\}$. We can now consider $\mathcal{N}[K(X)] = \{\mathcal{N}[K] : K \subseteq X \text{ is compact}\}.$

Consider a topological space (X, \mathcal{T}) .

- Let K(X) be the space of compact subsets of X.
- U is a k-cover of X if whenever K ⊆ X is compact, there is a U ∈ U so that K ⊆ U.
- Let \mathcal{K}_X be the collection of *k*-covers of *X*.
- For $K \subseteq X$ compact, let $\mathcal{N}[K] = \{U \in \mathcal{T} : K \subseteq U\}$. We can now consider $\mathcal{N}[K(X)] = \{\mathcal{N}[K] : K \subseteq X \text{ is compact}\}.$
- These sets are used to form the compact-open game $G_1(\mathcal{N}[\mathcal{K}(X)], \neg \mathcal{O})$ and its variant $G_1(\mathcal{N}[\mathcal{K}(X)], \neg \mathcal{K})$.
- We can also play the k-Rothberger game $G_1(\mathcal{K}, \mathcal{K})$.

Hemicompact

X is hemicompact if there are compact sets $K_n \subseteq X$ for $n \in \omega$ so that $X = \bigcup_n K_n$ and whenever $K \subseteq X$ is compact, there is some *n* so that $K \subseteq K_n$.

Hemicompact

X is hemicompact if there are compact sets $K_n \subseteq X$ for $n \in \omega$ so that $X = \bigcup_n K_n$ and whenever $K \subseteq X$ is compact, there is some n so that $K \subseteq K_n$.

Theorem

The following are equivalent:

- X is hemicompact
- $C_k(X)$ is first countable
- $I \uparrow_{pre} G_1(\mathcal{N}[K(X)], \neg \mathcal{K}_X)$

Clontz' Duality

Clontz 2018

If \mathcal{R} is a reflection of \mathcal{A} , then the two games $G_1(\mathcal{A}, \mathcal{B})$ and $G_1(\mathcal{R}, \neg \mathcal{B})$ are dual.

Clontz 2018

If \mathcal{R} is a reflection of \mathcal{A} , then the two games $G_1(\mathcal{A}, \mathcal{B})$ and $G_1(\mathcal{R}, \neg \mathcal{B})$ are dual.

Caruvana/Holshouser 2018

Suppose \mathcal{A} is a collection of subsets of X. For $A \in \mathcal{A}$, set $\mathcal{N}[A] = \{U \in \mathcal{T}_X : A \subseteq U\}$. Set

$$\mathcal{N}[\mathcal{A}] = \{\mathcal{N}[\mathcal{A}] : \mathcal{A} \in \mathcal{A}\}.$$

and

$$\mathcal{O}(X, \mathcal{A}) = \{ \mathcal{U} \in \mathcal{O}_X : (\forall A \in \mathcal{A}) (\exists U \in \mathcal{U}) [A \subseteq U] \}.$$

Let \mathcal{B} be a collection of open covers of X. Then $\mathcal{N}[\mathcal{A}]$ is a reflection of $\mathcal{O}(X, \mathcal{A})$ and therefore $G_1(\mathcal{N}[\mathcal{A}], \neg \mathcal{B})$ and $G_1(\mathcal{O}(X, \mathcal{A}), \mathcal{B})$ are dual.

Closed Discrete Selections of Functions III

Caruvana/Holshouser 2018

The following are equivalent.

- $I \uparrow G_1(\mathcal{N}[K(X)], \neg \mathcal{K}_X)$
- $II \uparrow G_1(\mathcal{K}_X, \mathcal{K}_X)$
- $I \uparrow G(\mathcal{T}_{C_k(X)}, CD_{C_k(X)})$

Closed Discrete Selections of Functions III

Caruvana/Holshouser 2018

The following are equivalent.

- $I \uparrow G_1(\mathcal{N}[K(X)], \neg \mathcal{K}_X)$
- $II \uparrow G_1(\mathcal{K}_X, \mathcal{K}_X)$
- $I \uparrow G(\mathcal{T}_{C_k(X)}, CD_{C_k(X)})$

Caruvana/Holshouser 2018

The following are equivalent.

- $I \uparrow_{pre} G_1(\mathcal{N}[K(X)], \neg \mathcal{K}_X)$
- $II \uparrow_{mark} G_1(\mathcal{K}_X, \mathcal{K}_X)$
- $I \uparrow_{pre} G(\mathcal{T}_{C_k(X)}, CD_{C_k(X)})$

Pawlikowski 1994

$I \uparrow_{pre} G_{\Box}(\mathcal{O}, \mathcal{O})$ if and only if $I \uparrow G_{\Box}(\mathcal{O}, \mathcal{O})$

Pawlikowski 1994

 $I\uparrow_{pre} G_{\Box}(\mathcal{O},\mathcal{O})$ if and only if $I\uparrow G_{\Box}(\mathcal{O},\mathcal{O})$

Caruvana/Holshouser 2018

Suppose $\mathcal{A} \subseteq \mathcal{B}$. Then $I \uparrow_{pre} G_{\Box}(\mathcal{O}(X, \mathcal{A}), \mathcal{O}(X, \mathcal{B}))$ if and only if $I \uparrow G_{\Box}(\mathcal{O}(X, \mathcal{A}), \mathcal{O}(X, \mathcal{B}))$

Caruvana/Holshouser 2018

The following are equivalent.

- $II \uparrow G_1(\mathcal{N}[K(X)], \neg \mathcal{K}_X)$
- $I \uparrow G_1(\mathcal{K}_X, \mathcal{K}_X)$
- $II \uparrow G(\mathcal{T}_{C_k(X)}, CD_{C_k(X)})$
- $II \uparrow_{mark} G_1(\mathcal{N}[K(X)], \neg \mathcal{K}_X)$
- $I \uparrow_{pre} G_1(\mathcal{K}_X, \mathcal{K}_X)$, i.e. X is not Rothberger with respect to k-covers
- $II \uparrow_{mark} G(\mathcal{T}_{C_k(X)}, CD_{C_k(X)})$

- What happens with $C_p(X, [0, 1])$?
- How far can Pawlikowski's result be generalized?
- How much of this theory can be recovered if the compact sets are replaced with a different ideal?
- How much of this theory can be recovered if instead of choosing subcovers we choose refinements?

Thanks for Listening