Limited Information Strategies and Discrete Selectivity

J.Holshouser

Department of Mathematics and Statistics University of South Alabama

Pure Math Seminar

J.Holshouser [Limited Information Strategies and Discrete Selectivity](#page-46-0) 1 / 30

Suppose X is a topological space.

- $C_p(X)$ is the space of continuous functions $f: X \to \mathbb{R}$
- It is endowed with the topology of pointwise convergence.

Suppose X is a topological space.

- $C_p(X)$ is the space of continuous functions $f: X \to \mathbb{R}$
- It is endowed with the topology of pointwise convergence.
- \bullet It will be convenient to assume that X is Hausdorff and completely regular (for every closed $C \subset X$ and $x \in X \setminus C$, there is a continuous function $f : X \to \mathbb{R}$ so that $f(x) = 0$ and $f[C] = \{1\}$.

To define the topology on $C_p(X)$ using open sets, we use the following neighborhoods:

Definition

If
$$
f: X \to \mathbb{R}
$$
 is continuous, $F = \{x_1, \dots, x_n\} \subseteq X$, and $\varepsilon > 0$, then

$$
[f, F, \varepsilon] = \{ g \in C_p(X) : |g(x_i) - f(x_i)| < \varepsilon \text{ for } 1 \leq i \leq n \}
$$

To define the topology on $C_p(X)$ using open sets, we use the following neighborhoods:

Definition

If $f: X \to \mathbb{R}$ is continuous, $F = \{x_1, \dots, x_n\} \subseteq X$, and $\varepsilon > 0$, then

$$
[f, F, \varepsilon] = \{ g \in C_p(X) : |g(x_i) - f(x_i)| < \varepsilon \text{ for } 1 \leq i \leq n \}
$$

Varying over F and ε forms a neighborhood basis at f.

The concept of a closed discrete selection was isolated by Sanchez and Tkachuk in 2017.

Closed Discrete Selection

For every sequence $(U_n : n \in \omega)$ of open subsets of X, there are points $x_n \in U_n$ so that $\{x_n : n \in \omega\}$ is closed and discrete.

The concept of a closed discrete selection was isolated by Sanchez and Tkachuk in 2017.

Closed Discrete Selection

For every sequence $(U_n : n \in \omega)$ of open subsets of X, there are points $x_n \in U_n$ so that $\{x_n : n \in \omega\}$ is closed and discrete.

Note that if X is first countable (or even has one point with a countable neighborhood basis), then it cannot have closed discrete selection. The converse is not generally true.

Tkachuk, 2017

Suppose X is Hausdorff and completely regular. Then the following are equivalent:

- \bullet $C_p(X)$ fails to satisfy closed discrete selection
- \bullet X is countable
- $C_p(X)$ is first-countable

If $C_p(X)$ fails to satisfy closed discrete selection, then X is countable:

- Suppose X is uncountable.
- Consider a sequence $[f_n, F_n, \varepsilon]$ of basic open sets in $C_p(X)$.
- Since X is uncountable, we can find a point $x^* \in X \smallsetminus F_n$.
- We can find continuous functions g_n so that $g_n|_{F_n} = f_n$ and $g_n(x^*)=n$.
- Then $g_n \in [f_n, F_n, \varepsilon]$ and $\{g_n : n \in \omega\}$ is closed discrete.

Suppose that $\mathcal A$ and $\mathcal B$ are collections of sets.

$S_1(\mathcal{A}, \mathcal{B})$

For every sequence $(A_n : n \in \omega)$ of sets from A, there are $C_n \in A_n$ so that $\{C_n : n \in \omega\} \in \mathcal{B}$

$S_{FIN}(\mathcal{A}, \mathcal{B})$

For every sequence $(A_n : n \in \omega)$ of sets from A, there are finite $F_n \subseteq A_n$ so that $\bigcup_n F_n \in \mathcal{B}$

Let O be the open covers of X. Then $S_1(\mathcal{O}, \mathcal{O})$ and $S_{FIN}(\mathcal{O}, \mathcal{O})$ are both strengthenings of the Lindelof property.

- $S_1(\mathcal{O}, \mathcal{O})$ is called the Rothberger property.
- \bullet $S_{FIN}(\mathcal{O}, \mathcal{O})$ is called the Menger property.

Let O be the open covers of X. Then $S_1(\mathcal{O}, \mathcal{O})$ and $S_{FIN}(\mathcal{O}, \mathcal{O})$ are both strengthenings of the Lindelof property.

- $S_1(\mathcal{O}, \mathcal{O})$ is called the Rothberger property.
- \bullet $S_{FIN}(\mathcal{O}, \mathcal{O})$ is called the Menger property.

$$
S_1(\mathcal{O}, \mathcal{O}) \Rightarrow S_{FIN}(\mathcal{O}, \mathcal{O}) \Rightarrow Lindelof
$$

and

$$
\mathsf{Compact} \Rightarrow \sigma\text{-}\mathsf{Compact} \Rightarrow \mathsf{S}_{\mathsf{FIN}}(\mathcal{O}, \mathcal{O}) \Rightarrow \mathsf{Lindelof}
$$

 $S_{\square}(\mathcal{A}, \mathcal{B})$ can be turned into a two-player game.

- The game is played over rounds indexed by the naturals.
- At round n, player I plays a set A_n from A and player II responds by playing a selection C_n from A_n .
- If those selections are singletons, then the game is $G_1(\mathcal{A}, \mathcal{B})$. If they are finite sets, then the game is $G_{FIN}(\mathcal{A}, \mathcal{B})$.
- Player II wins a given run of the game $(A_0, C_0, A_1, C_1, \dots)$ if $\bigcup_n C_n \in \mathcal{B}.$
- If player II does not win, then player I wins.

Perfect Information Strategies

Fix a game $G_{\square}(\mathcal{A}, \mathcal{B})$.

- A perfect information strategy for player I takes in a run of $G_{\Box}(\mathcal{A}, \mathcal{B})$ up to some round *n* and outputs a set $A_{n+1} \in \mathcal{A}$.
- A perfect information strategy for player II takes in a run of $G_{\Box}(\mathcal{A}, \mathcal{B})$ up to some round n and outputs a selection C_n from I's most recent move.

Fix a game $G_{\square}(\mathcal{A}, \mathcal{B})$.

- A perfect information strategy for player I takes in a run of $G_{\Box}(\mathcal{A}, \mathcal{B})$ up to some round *n* and outputs a set $A_{n+1} \in \mathcal{A}$.
- A perfect information strategy for player II takes in a run of $G_{\Box}(\mathcal{A}, \mathcal{B})$ up to some round n and outputs a selection C_n from I's most recent move.
- A strategy σ for player I is winning if the run $(\sigma(\emptyset), C_0, \sigma(C_0), C_1, \dots)$ wins for I no matter what selections II makes. If I has a winning strategy we write $I \uparrow G_{\Box}(\mathcal{A}, \mathcal{B})$.
- A strategy τ for player II is winning if the run $(A_0, \tau(A_0), A_1, \tau(A_0, A_1), \cdots)$ wins for II no matter what sets player I plays. If II has a winning strategy we write $II \uparrow G_{\Box}(\mathcal{A}, \mathcal{B})$.
- A Markov tactic for II is a strategy $\tau(A, n)$ which takes in only the round number and the most recent move of I. If II has a winning Markov tactic we write $II \uparrow_{mark} G_{\Box}(\mathcal{A}, \mathcal{B}).$
- A pre-determined strategy for I is a strategy $\sigma(n)$ which takes in only the round number. If I has a winning pre-determined strategy we write $I \uparrow_{pre} G_{\Box}(\mathcal{A}, \mathcal{B})$.

$$
I \uparrow_{pre} G(A, B) \Rightarrow I \uparrow G(A, B) \Rightarrow II \uparrow G(A, B)
$$

\n
$$
II \uparrow_{mark} G(A, B) \Rightarrow II \uparrow G(A, B) \Rightarrow I \uparrow G(A, B)
$$

\n
$$
II \uparrow G(A, B) \Rightarrow S(A, B)
$$

\n
$$
I \uparrow_{pre} G(A, B) \iff S(A, B)
$$

Useful Selection Games

- $G_1(\mathcal{O}, \mathcal{O})$ is the Rothberger game
- $G_{FIN}(\mathcal{O}, \mathcal{O})$ is the Menger game

Useful Selection Games

- $G_1(\mathcal{O}, \mathcal{O})$ is the Rothberger game
- $G_{FIN}(\mathcal{O}, \mathcal{O})$ is the Menger game
- The point-open game is traditionally played with player I choosing points x_n and player II choosing open sets $U_n \ni x_n$. Player I wins if $\{U_n : n \in \omega\}$ is an open cover.
- $G_1(\mathcal{O}, \mathcal{O})$ is the Rothberger game
- $G_{FIN}(\mathcal{O}, \mathcal{O})$ is the Menger game
- The point-open game is traditionally played with player I choosing points x_n and player II choosing open sets $U_n \ni x_n$. Player I wins if $\{U_n : n \in \omega\}$ is an open cover.
- Cast as a selection game, this looks like $G_1(\mathcal{P}, \neg \mathcal{O})$, where $\mathcal P$ is the collection of point bases and \neg consists of sequences of opens sets which are not open covers.
- The closed discrete selection game is $G_1(\mathcal{T}, CD)$, where $\mathcal T$ is the collection of open sets and CD is the collection of closed discrete subsets of X.
- \bullet $I \uparrow G_1(\mathcal{P}, \neg \mathcal{O})$ if and only if $II \uparrow G_1(\mathcal{O}, \mathcal{O})$
- \bullet II \uparrow $G_1(\mathcal{P}, \neg \mathcal{O})$ if and only if $I \uparrow G_1(\mathcal{O}, \mathcal{O})$
- \bullet I \uparrow_{pre} $G_1(\mathcal{P}, \neg \mathcal{O})$ if and only if X is countable.

Proof

 $I \uparrow G_1(\mathcal{P}, \neg \mathcal{O})$ implies $II \uparrow G_1(\mathcal{O}, \mathcal{O})$:

- Let σ be a winning strategy for I in $G_1(\mathcal{P}, \neg \mathcal{O})$.
- Say $\sigma(\emptyset) = x_0$.
- We need to define a strategy τ for II in $G_1(\mathcal{O}, \mathcal{O})$.
- Suppose U_0 has been played by I in $G_1(\mathcal{O}, \mathcal{O})$. Then we can find a $U_0 \in \mathcal{U}$ so that $x_0 \in \mathcal{U}_0$. Set $\tau(\mathcal{U}_0) = U_0$.
- Pretend II has repsonded in $G_1(\mathcal{P}, \neg \mathcal{O})$ with U_0 . Set $x_1 = \sigma(x_0, U_0)$.
- Now suppose I plays U_1 in $G_1(\mathcal{O}, \mathcal{O})$ in response to $\tau(U_0)$. Then there is a $U_1 \in \mathcal{U}_1$ so that $x_1 \in U_1$. Set $\tau(\mathcal{U}_1) = U_1$.
- **•** Continue in this way to inductively define τ . Because σ is winning for I in $G_1(\mathcal{P}, \neg \mathcal{O})$, $\{\tau(\mathcal{U}_n): n \in \omega\}$ will be an open cover.

Closed Discrete Selections of Functions II

Tkachuk, 2017

Suppose X is Hausdorff and completely regular. Then the following are equivalent:

- \bullet $C_p(X)$ fails to satisfy closed discrete selection
- \bullet X is countable
- $C_p(X)$ is first-countable

Equivalently, in the language of games:

Tkachuk, 2017

Suppose X is Hausdorff and completely regular. Then the following are equivalent:

- $I \uparrow_{pre} G_1(\mathcal{T}_{C_p(X)}, CD_{C_p(X)})$
- \bullet I \uparrow_{pre} $G_1(\mathcal{P}_X, \neg \mathcal{O}_X)$
- $C_p(X)$ is first-countable

Closed Discrete Selections of Functions II

Tkachuk was also able to prove a partial result for perfect information strategies:

Tkachuk, 2017

Suppose X is Hausdorff and completely regular. Then the following are equivalent:

$$
\bullet\ \ I\uparrow G_1(\mathcal{T}_{C_p(X)},CD_{C_p(X)})
$$

$$
\bullet\ \ I\uparrow \mathsf{G}_1(\mathcal{P}_X,\neg \mathcal{O}_X)
$$

Also, if $\textit{II} \uparrow \textit{G}(\mathcal{T}_{C_p(X)}, \textit{CD}_{C_p(X)}),$ then $\textit{II} \uparrow \textit{G}_1(\mathcal{P}_X, \neg \mathcal{O}_X).$

Tkachuk was also able to prove a partial result for perfect information strategies:

Tkachuk, 2017

Suppose X is Hausdorff and completely regular. Then the following are equivalent:

$$
\bullet\ \ I\uparrow G_1(\mathcal{T}_{C_p(X)},CD_{C_p(X)})
$$

$$
\bullet\ \textit{I} \uparrow \textit{G}_1(\mathcal{P}_X, \neg \mathcal{O}_X)
$$

Also, if $\textit{II} \uparrow \textit{G}(\mathcal{T}_{C_p(X)}, \textit{CD}_{C_p(X)}),$ then $\textit{II} \uparrow \textit{G}_1(\mathcal{P}_X, \neg \mathcal{O}_X).$

Is it true that if $H \uparrow \mathsf{G}_1(\mathcal{P}_X,\neg \mathcal{O}_X)$, then $H \uparrow \mathsf{G}(\mathcal{T}_{\mathsf{C}_\rho(X)}, \mathsf{C} \mathsf{D}_{\mathsf{C}_\rho(X)})$?

Consider a topological space (X, \mathcal{T}) .

- \bullet $\mathcal U$ is an $\omega\textrm{-cover}$ of X if whenever $F\subset X$ is finite, there is a $U\in\mathcal U$ so that $F \subset U$.
- Let Ω_X be the collection of ω -covers of X.
- For $F \subset X$ finite, let $\mathcal{N}[F] = \{U \in \mathcal{T} : F \subset U\}$. We can then consider $\mathcal{F}_X = \{ \mathcal{N} | F | : F \subseteq X \text{ is finite} \}.$

Consider a topological space (X, \mathcal{T}) .

- \bullet $\mathcal U$ is an $\omega\textrm{-cover}$ of X if whenever $F\subset X$ is finite, there is a $U\in\mathcal U$ so that $F \subset U$.
- Let Ω_X be the collection of ω -covers of X.
- For $F \subset X$ finite, let $\mathcal{N}[F] = \{U \in \mathcal{T} : F \subset U\}$. We can then consider $\mathcal{F}_X = \{ \mathcal{N} | F \}$: $F \subset X$ is finite}.
- We can now define the finite-open game $G_1(\mathcal{F}, \neg \mathcal{O})$ and its variant $G_1(\mathcal{F}, \neg \Omega)$
- We can also define $G_1(\Omega, \Omega)$.

Point-Open Versus Finite Open

Proposition

The following are equivalent:

- \bullet I \uparrow $G_1(\mathcal{P}, \neg \mathcal{O})$
- \bullet $I \uparrow G_1(\mathcal{F}, \neg \mathcal{O})$
- \bullet $I \uparrow G_1(\mathcal{F}, \neg \Omega)$
- \bullet II \uparrow $G_1(\mathcal{O}, \mathcal{O})$
- \bullet II \uparrow $G_1(\Omega,\Omega)$

Point-Open Versus Finite Open

Proposition

The following are equivalent:

- \bullet I \uparrow $G_1(\mathcal{P}, \neg \mathcal{O})$
- \bullet I \uparrow $G_1(\mathcal{F}, \neg \mathcal{O})$
- \bullet I \uparrow $G_1(\mathcal{F}, \neg \Omega)$
- \bullet II \uparrow $G_1(\mathcal{O}, \mathcal{O})$
- \bullet II \uparrow $G_1(\Omega,\Omega)$

What Tkachuk actually showed was that $I \uparrow \mathsf{G}_1(\mathcal{T}_{\mathsf{C}_\rho(X)}, \mathsf{CD}_{\mathsf{C}_\rho(X)})$ if and only if $I\uparrow\mathsf{G}_1(\mathcal{F},\neg \Omega)$ and that if $I\!I \uparrow \mathsf{G}_1(\mathcal{T}_{\mathsf{C}_\rho(\mathsf{X})},\mathsf{C} \mathsf{D}_{\mathsf{C}_\rho(\mathsf{X})}),$ then $II \uparrow G_1(\mathcal{F}, \neg \Omega).$

Point-Open Versus Finite Open II

Proposition

- If $II \uparrow G_1(\mathcal{F}, \neg \Omega)$, then $II \uparrow G_1(\mathcal{P}, \neg \mathcal{O})$.
- $G_1(\mathcal{F}, \neg \Omega)$ and $G_1(\Omega, \Omega)$ are dual.
- It is consistent with ZFC that there is a space X where $I \uparrow G_1(\mathcal{O}, \mathcal{O})$ but $I \npreceq G_1(\Omega, \Omega)$
- Thus it is consistent with ZFC that there is a space X where II $\uparrow G_1(\mathcal{P}, \neg \mathcal{O})$, but II $\uparrow G_1(\mathcal{F}, \neg \Omega)$.

Point-Open Versus Finite Open II

Proposition

- **•** If $II \uparrow G_1(\mathcal{F}, \neg \Omega)$, then $II \uparrow G_1(\mathcal{P}, \neg \mathcal{O})$.
- $G_1(\mathcal{F}, \neg \Omega)$ and $G_1(\Omega, \Omega)$ are dual.
- It is consistent with ZFC that there is a space X where $I \uparrow G_1(\mathcal{O}, \mathcal{O})$ but $I \npreceq G_1(\Omega, \Omega)$
- Thus it is consistent with ZFC that there is a space X where II $\uparrow G_1(\mathcal{P}, \neg \mathcal{O})$, but II $\uparrow G_1(\mathcal{F}, \neg \Omega)$.

With this in mind, the proper question is: does $II \uparrow G_1(\mathcal{F}_X, \neg \Omega_X)$ imply $II \uparrow G(\mathcal{T}_{C_p(X)}, CD_{C_p(X)})$?

Clontz/Holshouser 2018

The following are equivalent.

- \bullet II \uparrow $G_1(\mathcal{F}_X, \neg \Omega_X)$
- \bullet I \uparrow $G_1(\Omega_X, \Omega_X)$
- $II \uparrow G(\mathcal{T}_{C_p(X)},CD_{C_p(X)})$
- \bullet II \uparrow _{mark} $G_1(\mathcal{F}_X, \neg \Omega_X)$
- $I \uparrow_{pre} G_1(\Omega_X, \Omega_X)$, i.e. X is not Rothberger with respect to Ω -covers
- II \uparrow _{mark} $G(\mathcal{T}_{C_p(X)},CD_{C_p(X)})$

Suppose X is a topological space.

- $C_k(X)$ is the space of continuous functions $f: X \to \mathbb{R}$.
- It is endowed with the compact-open topology ("Uniform" Convergence on Compact Sets").
- **•** If $f : X \to \mathbb{R}$ is continuous, $K \subseteq X$ is compact, and $\varepsilon > 0$, then

$$
[f, K, \varepsilon] = \{ g \in C_p(X) : |g(x) - f(x)| < \varepsilon \text{ for all } x \in K \}
$$

These sets form a basis for the topology on $C_k(X)$.

Suppose X is a topological space.

- $C_k(X)$ is the space of continuous functions $f: X \to \mathbb{R}$.
- It is endowed with the compact-open topology ("Uniform" Convergence on Compact Sets").
- **•** If $f : X \to \mathbb{R}$ is continuous, $K \subseteq X$ is compact, and $\varepsilon > 0$, then

$$
[f, K, \varepsilon] = \{ g \in C_p(X) : |g(x) - f(x)| < \varepsilon \text{ for all } x \in K \}
$$

These sets form a basis for the topology on $C_k(X)$. What happens when we play the closed discrete game on $C_k(X)$? Consider a topological space (X, \mathcal{T}) .

- Let $K(X)$ be the space of compact subsets of X.
- \bullet U is a k-cover of X if whenever $K \subseteq X$ is compact, there is a $U \in \mathcal{U}$ so that $K \subset U$.
- Let K_X be the collection of k-covers of X.
- For $K \subset X$ compact, let $\mathcal{N}[K] = \{U \in \mathcal{T} : K \subset U\}$. We can now consider $\mathcal{N}[K(X)] = \{ \mathcal{N}[K] : K \subseteq X \text{ is compact} \}.$

Consider a topological space (X, \mathcal{T}) .

- Let $K(X)$ be the space of compact subsets of X.
- \bullet U is a k-cover of X if whenever $K \subseteq X$ is compact, there is a $U \in \mathcal{U}$ so that $K \subset U$.
- Let K_X be the collection of k-covers of X.
- For $K \subset X$ compact, let $\mathcal{N}[K] = \{U \in \mathcal{T} : K \subseteq U\}$. We can now consider $\mathcal{N}[K(X)] = \{ \mathcal{N}[K] : K \subseteq X \text{ is compact} \}.$
- These sets are used to form the compact-open game $G_1(\mathcal{N}[K(X)], \neg \mathcal{O})$ and its variant $G_1(\mathcal{N}[K(X)], \neg \mathcal{K})$.
- We can also play the k-Rothberger game $G_1(\mathcal{K}, \mathcal{K})$.

Hemicompact

X is hemicompact if there are compact sets $K_n \subset X$ for $n \in \omega$ so that $X=\bigcup_n K_n$ and whenever $K\subseteq X$ is compact, there is some n so that $K \subset K_n$.

Hemicompact

X is hemicompact if there are compact sets $K_n \subseteq X$ for $n \in \omega$ so that $X=\bigcup_n K_n$ and whenever $K\subseteq X$ is compact, there is some n so that $K \subset K_n$.

Theorem

The following are equivalent:

- \bullet X is hemicompact
- $C_k(X)$ is first countable
- \bullet I \uparrow_{pre} $G_1(\mathcal{N}[K(X)], \neg \mathcal{K}_X)$

Clontz' Duality

Clontz 2018

If R is a reflection of A, then the two games $G_1(A, B)$ and $G_1(\mathcal{R}, \neg \mathcal{B})$ are dual.

Clontz 2018

If R is a reflection of A, then the two games $G_1(A, B)$ and $G_1(\mathcal{R}, \neg B)$ are dual.

Caruvana/Holshouser 2018

Suppose A is a collection of subsets of X. For $A \in \mathcal{A}$, set $\mathcal{N}[A] = \{ U \in \mathcal{T}_X : A \subseteq U \}.$ Set

$$
\mathcal{N}[\mathcal{A}]=\{\mathcal{N}[A]:A\in\mathcal{A}\}.
$$

and

$$
\mathcal{O}(X,\mathcal{A})=\{\mathcal{U}\in\mathcal{O}_X:(\forall A\in\mathcal{A})(\exists U\in\mathcal{U})[A\subseteq U]\}.
$$

Let B be a collection of open covers of X. Then $\mathcal{N}[\mathcal{A}]$ is a reflection of $\mathcal{O}(X,\mathcal{A})$ and therefore $G_1(\mathcal{N}[\mathcal{A}],\neg\mathcal{B})$ and $G_1(\mathcal{O}(X,\mathcal{A}),\mathcal{B})$ are dual.

Closed Discrete Selections of Functions III

Caruvana/Holshouser 2018

The following are equivalent.

- \bullet $I \uparrow G_1(\mathcal{N}[K(X)], \neg \mathcal{K}_X)$
- \bullet II \uparrow $G_1(\mathcal{K}_X, \mathcal{K}_X)$
- $I \uparrow \textsf{G}(\mathcal{T}_{\textsf{C}_k(X)}, \textsf{CD}_{\textsf{C}_k(X)})$

Closed Discrete Selections of Functions III

Caruvana/Holshouser 2018

The following are equivalent.

- \bullet I \uparrow G₁(N[K(X)], \neg K_x)
- \bullet II \uparrow G₁(K_X, K_X)
- $I \uparrow \textsf{G}(\mathcal{T}_{\textsf{C}_k(X)}, \textsf{CD}_{\textsf{C}_k(X)})$

Caruvana/Holshouser 2018

The following are equivalent.

- \bullet I \uparrow_{pre} $G_1(\mathcal{N}[K(X)], \neg \mathcal{K}_X)$
- \bullet II \uparrow _{mark} $G_1(\mathcal{K}_X, \mathcal{K}_X)$
- $I\uparrow_{\mathsf{pre}}\mathsf{G}(\mathcal{T}_{\mathsf{C}_k(X)},\mathsf{C} \mathsf{D}_{\mathsf{C}_k(X)})$

Pawlikowski 1994

$I \uparrow_{\text{pre}} G_{\square}(\mathcal{O}, \mathcal{O})$ if and only if $I \uparrow G_{\square}(\mathcal{O}, \mathcal{O})$

Pawlikowski 1994

 $I \uparrow_{pre} G_{\Box}(\mathcal{O}, \mathcal{O})$ if and only if $I \uparrow G_{\Box}(\mathcal{O}, \mathcal{O})$

Caruvana/Holshouser 2018

Suppose $A \subseteq B$. Then $I \uparrow_{pre} G_{\Box}(\mathcal{O}(X,A), \mathcal{O}(X,B))$ if and only if $I \uparrow G_{\Box}(\mathcal{O}(X,\mathcal{A}), \mathcal{O}(X,\mathcal{B}))$

Caruvana/Holshouser 2018

The following are equivalent.

- \bullet II \uparrow G₁(N[K(X)], $\neg K_X$)
- \bullet I \uparrow $G_1(\mathcal{K}_X, \mathcal{K}_X)$
- $II \uparrow G(\mathcal{T}_{C_k(X)},CD_{C_k(X)})$
- \bullet II \uparrow _{mark} $G_1(\mathcal{N}[K(X)], \neg \mathcal{K}_X)$
- \bullet I $\uparrow_{\text{pre}} G_1(\mathcal{K}_X, \mathcal{K}_X)$, i.e. X is not Rothberger with respect to k-covers
- II \uparrow mark $G(\mathcal{T}_{C_k(X)}, \mathcal{CD}_{C_k(X)})$
- What happens with $C_p(X, [0, 1])$?
- How far can Pawlikowski's result be generalized?
- How much of this theory can be recovered if the compact sets are replaced with a different ideal?
- How much of this theory can be recovered if instead of choosing subcovers we choose refinements?

Thanks for Listening