Successes and Failures in Translating Strategies Across Selection Games

Jared Holshouser (with Chris Caruvana)

Mathematics Department Norwich University

Fall 2021 Southeastern AMS Sectional Meeting

Selection Principles (Menger, Hurewicz 1924) (Scheepers 1996)

Suppose that \mathcal{A} and \mathcal{B} are collections.

$S_1(\mathcal{A},\mathcal{B})$

 $S_1(\mathcal{A}, \mathcal{B})$ means that for all sequences A_n consisting of elements of \mathcal{A} , there are choices $x_n \in A_n$ so that $\{x_n : n \in \omega\} \in \mathcal{B}$.

$S_{\mathrm{fin}}(\mathcal{A},\mathcal{B})$

 $S_{\text{fin}}(\mathcal{A}, \mathcal{B})$ means that for all sequences A_n consisting of elements of \mathcal{A} , there are finite $F_n \subseteq A_n$ so that $\bigcup_n F_n \in \mathcal{B}$.

- Let $\mathcal{O}(X)$ denote the open covers of X.
- Let \mathscr{D}_X denote the dense subsets of X.
- Let $\Omega_{X,x}$ denote the sets $A \subseteq X$ such that $x \in \overline{A}$.

- A perfect information (PI) strategy for either player One or Two is a strategy for responding to the other player that takes as inputs all of the previous plays of the game.
- A **Markov strategy** for player Two is a strategy that takes as inputs the current turn number and the most recent play of player One.
- A **pre-determined (PD) strategy** for player One is a strategy where the only input is the current turn number.
- A strategy is **winning** if following the strategy guarantees that the player will win the game.

Strategies

• Playing according to a PI strategy for One:

• Playing according to a PI strategy for Two:

• Playing according to a Markov strategy for Two:

• Playing according to a PD strategy for One:

A Strength Hierarchy

```
For the selection game G_1(\mathcal{A}, \mathcal{B}):

Two has a winning Markov Strategy

\downarrow

Two has a winning PI strategy

\downarrow

One has no winning PI strategy

\downarrow

One has no winning PD strategy \iff S_1(\mathcal{A}, \mathcal{B})
```

躔

Game Equivalence

Definition

Define $G_1(\mathcal{A}, \mathcal{C}) \leq_{\mathrm{II}} G_1(\mathcal{B}, \mathcal{D})$ as the conjunction of the following implications.

- **()** Two has Mark in $G_1(\mathcal{A}, \mathcal{C}) \implies$ Two has a Mark in $G_1(\mathcal{B}, \mathcal{D})$
- **2** Two has PI strat in $G_1(\mathcal{A}, \mathcal{C}) \implies$ Two has a PI strat in $G_1(\mathcal{B}, \mathcal{D})$
- **3** One has no PI strat in $G_1(\mathcal{A}, \mathcal{C}) \implies$ One has no PI strat in $G_1(\mathcal{B}, \mathcal{D})$
- **(**) One has no PD strat in $G_1(\mathcal{A}, \mathcal{C}) \implies$ One has no PD strat in $G_1(\mathcal{B}, \mathcal{D})$
 - This relation is transitive.
 - if $G_1(\mathcal{A}, \mathcal{C}) \leq_{\mathrm{II}} G_1(\mathcal{B}, \mathcal{D})$ and $G_1(\mathcal{B}, \mathcal{D}) \leq_{\mathrm{II}} G_1(\mathcal{A}, \mathcal{C})$, we say the two games are **equivalent** and write $G_1(\mathcal{A}, \mathcal{C}) \equiv G_1(\mathcal{B}, \mathcal{D})$.
 - There is a G_{fin} version of all of this.

Let $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ be collections.

Monotonicity

- If $\mathcal{B} \subseteq \mathcal{A}$, then $G_{\Box}(\mathcal{A}, \mathcal{C}) \leq_{\mathrm{II}} G_{\Box}(\mathcal{B}, \mathcal{C})$.
- If $\mathcal{D} \subseteq \mathcal{C}$, then $G_{\Box}(\mathcal{A}, \mathcal{D}) \leq_{\mathrm{II}} G_{\Box}(\mathcal{A}, \mathcal{C})$.

As an application of this law, $G_1(\Omega_{X,x}, \Omega_{X,x}) \leq_{\text{II}} G_1(\mathcal{D}_X, \Omega_{X,x})$ for any space X and point $x \in X$.

Caruvana, Holshouser 2020

Assume that $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ are collections and that $\bigcup \mathcal{C} \subseteq \bigcup \mathcal{A}$ and $\bigcup \mathcal{D} \subseteq \bigcup \mathcal{B}$. Suppose that there is a bijection $\beta : \bigcup \mathcal{A} \to \bigcup \mathcal{B}$ so that

- $A \in \mathcal{A}$ if and only if $\beta[A] \in \mathcal{B}$, and
- $C \in \mathcal{C}$ if and only if $\beta[C] \in \mathcal{D}$.

Then $G_{\Box}(\mathcal{A}, \mathcal{C}) \equiv G_{\Box}(\mathcal{B}, \mathcal{D}).$

Let $\mathbb{F}(X)$ denote the Fell topology on the hyperspace of closed subsets of X and let $\mathcal{K}_F(X)$ be the collection of k_F -covers of X (as defined by Li).

Caruvana, Holshouser 2020

 $G_{\Box}(\mathcal{K}_F(X), \mathcal{K}_F(X)) \equiv G_{\Box}(\mathcal{D}_{\mathbb{F}(X)}, D_{\mathbb{F}(X)}).$

We can prove this by defining $\beta : \mathcal{T}_X \to \mathbb{F}(X)$ as $\beta(U) = X \setminus U$ and then confirming that $\mathscr{U} \in \mathcal{K}_F(X)$ if and only if $\beta[\mathscr{U}] \in \mathcal{D}_{\mathbb{F}(X)}$.

Successes and Failures in Translating Strategies Across Selection Ga / 18

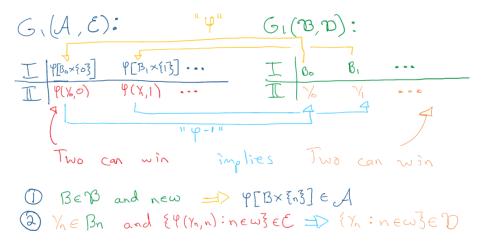
Caruvana, Holshouser 2020

Assume that $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ are collections and that $\bigcup \mathcal{C} \subseteq \bigcup \mathcal{A}$ and $\bigcup \mathcal{D} \subseteq \bigcup \mathcal{B}$. Suppose that there is a function $\varphi : \bigcup \mathcal{B} \times \omega \to \bigcup \mathcal{A}$ so that

• If $B \in \mathcal{B}$ and $n \in \omega$, then $\varphi[B \times \{n\}] \in \mathcal{A}$, and

• If $y_n \in B_n$ and $\{\varphi(y_n, n) : n \in \omega\} \in \mathcal{C}$, then $\{y_n : n \in \omega\} \in \mathcal{D}$. Then $G_1(\mathcal{A}, \mathcal{C}) \leq_{\mathrm{II}} G_1(\mathcal{B}, \mathcal{D})$.

Turn Based Translation



Successes and Failures in Translating Strategies Across Selection Ga / 18

Let X be a topological space, $\mathcal{K}(X)$ be the k-covers of X, and $C_K(X)$ be the continuous functions from X to \mathbb{R} with the compact-open topology.

Caruvana, Holshouser 2020

$$G_1(\mathcal{K}(X), \mathcal{K}(X)) \leq_{\mathrm{II}} G_1(\Omega_{C_k(X),\mathbf{0}}, \Omega_{C_k(X),\mathbf{0}}).$$

We can prove this by defining $\varphi : C_K(X) \times \omega \to \mathcal{T}_X$ as $\varphi(f,n) = f^{-1}(-2^{-n}, 2^{-n})$ and then confirming that • If $\mathbf{0} \in \overline{A}$, then $\{f^{-1}(-2^{-n}, 2^{-n}) : f \in A\}$ is a k-cover, and • If $\{f_n^{-1}(-2^{-n}, 2^{-n}) : n \in \omega\}$ is a k-cover, then $\mathbf{0} \in \overline{\{f_n : n \in \omega\}}$.

> Successes and Failures in Translating Strategies Across Selection Ga / 18

General Translation

Theorem (Caruvana and Holshouser 2019)

Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$, and \mathcal{D} be collections. Suppose there are functions • $\overleftarrow{T}_{\mathbf{L}n} : \mathcal{B} \to \mathcal{A}$ and

•
$$\overrightarrow{T}_{\mathrm{II},n}:\bigcup\mathcal{A}\times\mathcal{B}\to\bigcup\mathcal{B}$$

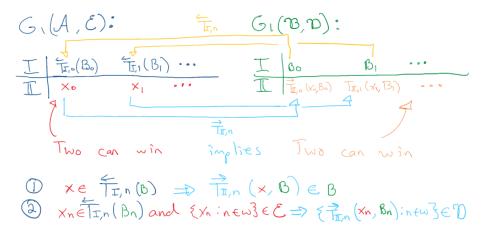
so that

• if
$$x \in \overleftarrow{T}_{I,n}(B)$$
, then $\overrightarrow{T}_{II,n}(x,B) \in B$ and
• if $x_n \in \overleftarrow{T}_{I,n}(B_n)$ for all n , then

$$\{x_n : n \in \omega\} \in \mathcal{C} \implies \left\{ \overrightarrow{T}_{\mathrm{II},n}(x_n, B_n) : n \in \omega \right\} \in \mathcal{D}$$

Then $G_1(\mathcal{A}, \mathcal{C}) \leq_{\mathrm{II}} G_1(\mathcal{B}, \mathcal{D}).$

General Translation



Successes and Failures in Translating Strategies Across Selection Ga / 18

躔

Using General Translation

Let X be a $T_{3.5}$ topological space, $\mathcal{K}(X)$ be the k-covers of X, and $C_K(X)$ be the continuous functions from X to \mathbb{R} with the compact-open topology.

Theorem (Caruvana and Holshouser 2019)

$$G_1(\mathcal{D}_{C_k(X)}, \Omega_{C_K(X), \mathbf{0}}) \leq_{\mathrm{II}} G_1(\mathcal{K}(X), \mathcal{K}(X))$$

Define $\overleftarrow{T}_{\mathrm{I},n}(\mathscr{U}) = \{f : (\exists U \in \mathscr{U}) [f[X \setminus U] = \{1\}\} \text{ and set } \overrightarrow{T}_{\mathrm{II},n}(f, \mathscr{U})$ to be a choice of $U \in \mathscr{U}$ so that $f[X \setminus U] = \{1\}$ if possible, and Xotherwise. Confirm that

- $\overleftarrow{T}_{\mathrm{I},n}$ and $\overrightarrow{T}_{\mathrm{II},n}$ are well-defined,
- (The first condition immediately falls out), and
- If \mathscr{U}_n are k-covers, f_n and $U_n \in \mathscr{U}_n$ are so that $f_n[X \setminus U_n] = \{1\}$, and $\mathbf{0} \in \overline{\{f_n : n \in \omega\}}$, then $\{U_n : n \in \omega\}$ is a k-cover.

穞

A Game Reduction That Does Not Use Translation

Let X be a topological space, \mathcal{O} be the open covers of X, and Ω be the ω -covers of X. Then

T	heorem	

 $G_1(\Omega, \Omega) \leq_{\mathrm{II}} G_1(\mathcal{O}, \mathcal{O}).$

- Player II has a winning (Markov) strategy in $G_1(\Omega, \Omega)$ if and only if they have a winning (Markov) strategy in $G_1(\mathcal{O}, \mathcal{O})$.
- Using the result of Pawlikowski, Player I has a winning strat in $G_1(\mathcal{O}, \mathcal{O})$ if and only if they have winning PD strat.
- Using the generalization of Pawlikowski, Player I has a winning strat in $G_1(\Omega, \Omega)$ if and only if they have winning PD strat.
- Using the bijection between ω and ω^2 , $S_1(\Omega, \Omega)$ is equivalent $S_1(\mathcal{O}, \mathcal{O})$.

- The game reductions that came from translations all generalize to different ideals. In particular, they work both in reference to compact sets and to finite sets.
- $G_1(\Omega, \Omega) \leq_{\mathrm{II}} G_1(\mathcal{O}, \mathcal{O}), \text{ but } G_1(\mathcal{K}, \mathcal{K}) \not\leq_{\mathrm{II}} G_1(\mathcal{O}, \mathcal{O}).$
- The game reductions that come from translation can either be directly applied, or slightly modified, to establish a reduction between the finite selection games, groupable versions of the games, longer games, and localized versions of the games.
- $G_{\operatorname{fin}}(\Omega,\Omega) \leq_{\operatorname{II}} G_{\operatorname{fin}}(\mathcal{O},\mathcal{O}) \text{ and } G_{\operatorname{fin}}(\mathcal{K},\mathcal{K}) \leq_{\operatorname{II}} G_{\operatorname{fin}}(\mathcal{O},\mathcal{O}).$

Thanks for Listening

es Across Selection G

Jared Holshouser (with Chris Caruvana)

Successes and Failures in Translating Strategies Across Selection Ga / 18